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Executive Summary 

This report chronicles the construction, verification, and utilization of a three-degree-of-
freedom (3DOF) multi-stage rocket trajectory code for AERO4800. The task involved modelling 
United Launch Alliance’s Vulcan Centaur Launch System (VCLS) ascent from liftoff to staging, 
gravity turn, and orbital insertion. The effort was separated into three large phases: code 
construction, verification with analytical and textbook benchmarks, and utilization for a typical 
orbital launch simulation. 

In Part 1, a generic trajectory solver was written in Python to model thrust, drag, gravitational 
changes with height, mass losses, and parallel and series staging. The solver was made user-
specified stage parameter and gravity-turn profiles compatible. Modularity, with a flowchart and 
code walkthroughs, was used to allow for transparency and reproducing abilities. 

Part 2 also verified the solver with known analytical and numerical standards, such as Curtis’ 
Example 13.2/13.3, and an analytical staging solution. Such comparisons verified proper thrust 
and mass depletion modelling, stage transition, and gravity/drag loss calculations. Results 
exhibited excellent correlation with desired velocity, height, and burnout conditions, giving firm 
confidence in solver reliability. 

Part 3 applied the validated solver to the Vulcan Centaur launch vehicle, configured with an 
appropriate number of solid rocket boosters and realistic propulsion parameters. The 
simulation successfully demonstrated insertion of a 20-tonne payload into a 400 km circular 
low Earth orbit within the ±10% payload tolerance and ±5% trajectory requirements specified in 
the assignment. The trajectory captured key mission events such as max-q, booster separation, 
core burnout, and Centaur final insertion, with results supported by time histories, event tables, 
and trajectory plots. 

In summary, the solver developed is robust and accurate in modelling real orbital ascent 
problems. The Vulcan Centaur case study supported that such a system can be launched into 
orbit with appropriate staging and flight-path control to meet assignment requirements. Beyond 
academic verification, the report shows broader applicability of trajectory modelling to real 
launcher design, mission planning, and performance assessment. 
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Task 1. Develop a 3DOF Multi-Stage Rocket Trajectory Code 

Introduction 

This section presents the development of a three degree of freedom trajectory solver for a 
multistage launch vehicle. The goal was to make use of the simple vertical solver from Lecture 
5: Launch Vehicles 2: Time Resolved and Numerical Solutions and modify it to accommodate 
the requirements of the task. This code can be found in the Appendix. These requirements being 
a python script that can model: 

• Velocity 
• Altitude 
• Downrange Distance 
• Flight Path Angle 
• Variable Vehicle mass with time (from Thrust, Isp and propellant) 
• Aerodynamic drag with altitude-dependent density 
• A programmed pitch over manoeuvre to initiate a gravity turn trajectory 

Curtis Examples 13.2/13.3 will be used to validate as they  include all the essential ingredients 
of a practical launch (thrust, drag, variable gravity, atmosphere, pitch over), whilst providing 
clear analytical solutions allowing for accurate verification. Successfully reproducing Curtis 
13.2/13.3 provides confidence that the solver is accurate and extensible, thereby meeting the 
requirements of Part 1 and Part 2 of the assignment brief. 

Table 1. Equations of Motion from Curtis Ch13 – Used as base for Updated Code. 

Velocity change over time 
𝑑𝑣

𝑑𝑡
=

𝑇

𝑚
−

𝐷

𝑚
− 𝑔𝑠𝑖𝑛𝛾 

𝑇 is thrust, 𝑚 is instantaneous mass, 𝐷 is drag, 𝑔 is local gravity and 𝛾 is flight-path angle. 
Flight path angle over time 

𝑑𝛾

𝑑𝑡
= −

1

𝑣
(𝑔 −

𝑣2

𝑅𝐸 + ℎ
) 𝑐𝑜𝑠𝛾 

𝑣 is instantaneous velocity, 𝑅𝐸  is the radius of Earth (6,371 𝑘𝑚) and ℎ is altitude 
Altitude change over time 

𝑑ℎ

𝑑𝑡
= 𝑣𝑠𝑖𝑛𝛾 

 
Downrange Distance over time 

𝑑𝑥

𝑑𝑡
=

𝑅𝐸

𝑅𝐸 + ℎ
𝑣𝑐𝑜𝑠𝛾 

 
Mass depletion over time 

𝑑𝑚𝑒

𝑑𝑡
=

𝑇

𝐼𝑠𝑝𝑔0
 

𝐼𝑠𝑝 is the Specific Impulse of the Rocket Engine, and 𝑔0 is gravity at sea level (9.81 𝑚/𝑠) 
Aerodynamic Drag 

𝐷 =
1

2
𝜌𝑣2𝐴𝐶𝐷 

𝜌 is atmospheric density, 𝐴 is reference area, and 𝐶𝐷 is the drag coefficient. 



Vehicle Modelling 

The solver represents the vehicle using three classes: 

1. Class StageElement: 

This class represents a single physical rocket element, such as a core stage, solid rocket 
booster, or an upper stage. Each element stores its fundamental design parameters: 

• Name (e.g. Core) 
• Thrust 𝑇 [𝑁], assumed constant during burn 
• Specific impulse 𝐼𝑠𝑝 [𝑠], used to calculate effective exhaust velocity and propellant 

mass flow rate 
• Propellant mass 𝑚𝑝𝑟𝑜𝑝 [𝑘𝑔], the initial usable propellant carried by this element. 

• Structural mass 𝑚𝑠𝑡𝑟𝑢𝑐𝑡 [𝑘𝑔], representing tanks, engines, avionics, etc. 

From these properties the propellant flow rate is derived: 

𝑚𝑒̇ =
𝑇

𝐼𝑠𝑝𝑔0
 

This quantity determines how quickly the element consumes its propellant during powered 
flight. Additionally, a state index is attached to each element so that the remaining propellant 
can be tracked during integration.  

2. Class StageGroup: 

This class groups multiple elements that burn in parallel. For example, several strap on 
boosters, and a core stage could all form one StageGroup. All elements in a StageGroup ignite 
together and contribute thrust simultaneously until each StageElement’s propellant is depleted. 

3. Class Vehicle: 

This class provides the system level representation of the launch vehicle in the 3DOF solver. The 
Vehicle class ties the various StageGroup’s together into a full multistage launch system that 
can be integrated through the equations of motion.  For example: 

• Group 1: Boosters and core stage burning in parallel. 
• Group 2: Upper stage operating after booster separation. 

The class operates using 5 Functions. 

1. Initial State construction: 
• Kinematic variables: velocity, altitude, downrange distance, flight path angle. 
• Per-element variables: remaining propellant mass and a structural “attached” flag (1 

= carried, 0 = jettisoned). 
2. Active group logic: 

• Determines which StageGroup is currently contributing Thrust by always selecting 
the lowest-index group still attached. 

3. Mass Accounting: 
• Computes the instantaneous vehicle mass by summing payload, all attached 

structural masses, and any remaining propellant across all elements. 



• This ensures that inactive upper stages contribute dead weight until their turn to 
burn. 

4. Force Generation: 
• Computes the total thrust and mass flow rate from the active group only, so that only 

burning engines contribute to acceleration while other stages remain inert 
5. Jettison logic:  

• Checks whether individual elements or entire groups have exhausted their 
propellant.  

• Once empty, their structural flags are set to zero, removing their structural mass 
from the vehicle and ensuring realistic staging behaviour. 

Making use of these functions, the Vehicle class ties the entire solver together. It determines 
which stages are burning, how the total mass evolves with time, when staging events occur, and 
what forces act on the vehicle at each timestep. This abstraction makes the solver modular and 
extensible – even though Curtis Example 13.3 involves only a single stage, the same framework 
would seamlessly support realistic multi-stage launch vehicles such as required in Task 3. 

Atmosphere, Gravity and Drag Models: 

Two different atmosphere models are implemented in the code able to be switched using 
set_atmosphere(“model”). 

Table 2. Summary of Atmosphere, Gravity and Drag Models 

Exponential Scale Height (“scale”): 

𝜌 = 𝜌0 exp (−
ℎ

𝐻
) 

𝜌0 = 1.225 𝑘𝑔/𝑚3 and 𝐻 = 7500 𝑚 
US Standard Atmosphere 1976 ("US"): 
This model makes use of recorded density data up to an altitude of 100 km and linearly 
interpolates, for realism in Task 3. This is done in python using: 

np.interp(alt, alt_densities, alt) 
Additionally, the function also returns a density of 0.0 if above 100 km altitude. 
Gravity: 

𝑔(ℎ) =
𝑔0

(1 +
ℎ

𝑅𝐸
)

2 

Drag: 
The drag calculation makes use of the formula defined in the Equations of Motion section 
above, using a defined Reference Area, 𝐴𝑅𝑒𝑓  and Drag Coefficient 𝐶𝐷. 
 

 

  



Pitch over Kick: 

In practice, a small, commanded pitch over is required to initiate the turn. Two modes are 
implemented : 

• Instant kick: a discrete reduction in 𝛾 applied at the trigger altitude. 
if kick_mode.lower() == "instant": 

            # Instant kick: reduce gamma by kick_delta_deg 

            gamB = gamA - np.deg2rad(kick_delta_deg) 

            y0_B = y_kick_fixed.copy() 

            y0_B[3] = gamB 

• Rate kick: a constant commanded 𝛾̇ applied for a specified time. 
elif kick_mode.lower() == "rate": 

            # Rate kick: enable a constant gamma-dot for a fixed 

duration 

            y0_B = y_kick_fixed.copy() 

            gamma_rate_rad = -np.deg2rad(kick_rate_deg_s) 

Both methods seed the gravity turn while maintaining physical plausibility for actuator limits. 
After the kick, the natural gravity turn’s dynamics dominate, progressively aligning the vehicle 
with the local horizontal. 

Gravity Turn Dynamics: 

Once a pitch over altitude is reached, the rocket transitions from vertical ascent into a gravity 
turn. The flight path angle 𝛾 evolves according to: 

• Flat Earth Model 

𝛾̇ = −
𝑔

𝑣
𝑐𝑜𝑠𝛾 

• Curved Earth Model 

𝛾̇ = − (
𝑔

𝑣
−

𝑣

𝑅𝐸 + ℎ
) 𝑐𝑜𝑠𝛾 

The curved formulation includes the geometric effect of Earth’s surface curvature, preventing 
over-flattening at high velocity. Physically, these relations describe how the vertical component 

of gravity continuously reduces the flight path angle. As the vehicle accelerates, the term 𝑔
𝑣

 

diminishes, causing the trajectory to gradually flatten without active steering input. The function 
that enforces the gravity turn dynamics can be seen below. To prevent computational errors, the 
flight path angle is held constant at 90° until the programmed pitch kick is applied, ensuring 
stability in the simulation. 

  



EOM_staged Function: 

The complete dynamics of the launch are evaluated through the custom eom_staged function, 
which numerically integrates the governing equations of motion for a multi-stage vehicle. This 
function builds directly on the theoretical framework from the Curtis (2020) equations above, 
and the Lecture 5 Solver in the appendix. The functionality is outlined in Figure 1 (Flowchart). 

The state vector is defined as: 

𝑦 = [𝑣, ℎ, 𝑥, 𝛾, 𝑝0 … 𝑝𝑁−1, 𝑠0 … 𝑠𝑁−1] 

where 𝑣 is velocity, ℎ altitude, x downrange distance, 𝛾 flight path angle, 𝑝𝑖  the remaining 
propellant in element 𝑖, and 𝑠𝑖  a binary flag for whether that element’s structure is still attached.  

runsim_full Function: 

The runsim_full routine integrates the two-dimensional point-mass rocket equations through 
liftoff, optional pitch over, and ascent until either ground impact or a set final time. 

Segment A (Initial Integration): 
Starts at t = 0 with near-zero velocity, altitude, and downrange; 𝛾 =  90°. Active models: thrust, 
drag, gravity, atmosphere, mass depletion, staging. The gravity-turn law is held off (𝛾̇ = 0) until a 
kick trigger. Event monitors include: 

• Kick altitude (ℎ ≥  ℎ𝑘𝑖𝑐𝑘) 

• Ground contact (ℎ ≤  0 on descent) 

• Final time stops 

Integration halts at the first event: reaching kick altitude (→ kick handling), hitting ground 
(terminate), or final time (terminate). 

Kick Handling: 
At h_kick, the state is continuous (mass, velocity preserved). Only γ is modified: 

• Instant kick: discrete 𝛥𝛾 applied in one step 

• Rate kick: γ slewed smoothly over 𝛥𝑡𝑘𝑖𝑐𝑘, with |𝛾̇|  ≤  𝛾̇𝑚𝑎𝑥 

Both maintain continuity and enable gravity-turn dynamics immediately. 

Segment B (Post-Kick): 
Integration resumes with the guidance law: 

𝛾̇ =  − (
𝑔

𝑣
 −

𝑣

𝑅𝐸 + ℎ
) 𝑐𝑜𝑠𝛾, 

staging logic, and termination at ground or final time. 

Outputs: 

• Segments A and B 

• Kick metadata (event, mode, 𝛥𝛾, 𝛾̇𝑚𝑎𝑥) 

• Event stamps (SRB separation, cutoffs) 



• Diagnostics: drag/gravity losses, max q, apoapsis/periapsis 

Stability Features: 
Ground events override kicks if near simultaneous. States evolve without resets. Gates prevent 
chatter at thresholds; γ limited to ±170° with cosine safeguards. In rate mode, unfinished Δγ is 
carried forward. 

This modular design supports both idealised (instant) and realistic (rate-limited) manoeuvres 
while meeting requirements to model drag, gravity losses, staging, and gravity turns for the 
Vulcan Centaur. 

Interactive_Plot Function: 

In addition to the core trajectory solver, an auxiliary function interactive_plot was implemented 
to improve post-processing and visualisation. This routine allows the user to select any stored 
simulation variable (e.g., velocity, altitude, dynamic pressure, flight path angle) for plotting 
against another, without modifying the code manually. 

The function operates in a loop: 

• It first prints a list of available keys in the dataset. 

• The user specifies an x-axis variable (commonly time or downrange distance). 

• One or more y-axis variables can then be selected for overlay on the same figure. 

• Event markers such as kick altitude, stage separations, or fairing jettison are 
automatically added to the plot if enabled. 

This interactivity makes it straightforward to explore relationships between quantities. Although 
not essential to the trajectory integration itself, this feature is a useful convenience tool for 
rapidly comparing different simulation outputs, diagnosing anomalies, and generating 
customised figures for reports. 

  



Flowchart of Code Functions: 

To clearly outline how the simulation operates, a flowchart of the code functions is 
presented in Figure 1. This diagram summarises the logical sequence of the trajectory 
solver, from defining initial parameters and vehicle properties through to the integration 
of the equations of motion, event handling, staging logic, and final post-processing of 
results. By breaking the code into modular steps, the flowchart highlights how each part 
of the solver interacts, ensuring that complex behaviours such as pitch-kicks, staging, 
and validation are implemented in a structured and transparent way. 

Figure 1. Flowchart of trajectory simulation code functions 

 



Task 2. Validation of Your 3DOF Trajectory Code 

Introduction 

In this section, the simulation code and equations of motion developed previously are applied 
to reproduce and compare against the worked examples presented by Curtis in Sections 13.2 
and 13.3. These textbook cases provide reference trajectories for simplified single-stage 
rockets, first in vacuum (Example 13.2) and then including atmospheric drag and a gravity-turn 
manoeuvre (Example 13.3). By implementing the same assumptions and initial conditions 
within the numerical model, the results obtained here can be directly compared with Curtis’ 
solutions, allowing the accuracy of the code to be validated and the influence of drag and 
gravity-turn dynamics to be assessed. 

Example 13.2 

Table 3 lists the expected burnout and apex conditions from Curtis Example 13.2, which were 
used as a benchmark for validating the trajectory code. The case assumes a vertical trajectory 
with no drag, constant gravity at sea-level 𝑔0 = 9.81 𝑚/𝑠, constant thrust, and a mass ratio of 7. 
Under these assumptions, the Python implementation reproduced the reference results with 
excellent accuracy: the simulated burnout time, altitude, velocity, and maximum altitude all 
matched the reference case within 0.05% error. This strong agreement confirms that the 
governing equations and the propellant mass depletion model were implemented correctly. 

Table 3. Expected Burnout and Apex Results for Curtis Example 13.2 Validation Case 

Variable Simulated Reference % Error 
Time to burnout 238.8 𝑠 238.8 𝑠 −0.000% 

Burnout altitude 337.7 𝑘𝑚 337.6 𝑘𝑚 0.036% 

Burnout speed 5.102 𝑘𝑚/𝑠 5.102 𝑘𝑚/𝑠 0.005% 
Maximum altitude 1664.6 𝑘𝑚 1664.6 𝑘𝑚 −0.002% 

 

Figure 2. Trajectory validation against Curtis Example 13.2 (Developed) 



Figure 2 illustrates the simulated altitude and velocity histories. The behaviour is consistent 
with that expected for a rocket in vacuum: a smooth increase in altitude and velocity during 
powered flight, followed by a coasting phase where altitude continues to rise while velocity 
decreases under gravity. The close agreement with the Curtis reference results provides strong 
validation of the developed code for this simplified single-stage case. 

Example 13.3 

At burnout, Curtis Example 13.3 predicts an altitude of 110.324 km, a velocity of 5.737 km/s, 
and a flight-path angle of 9.154°, with corresponding velocity losses of 0.298 km/s due to drag 
and 1.410 km/s due to gravity. These results are based on the assumptions of constant thrust, a 
fixed drag coefficient of 0.5, an exponential atmosphere with a scale height of 7.5 km, and 
variable gravity with altitude. The trajectory also incorporates a pitchover beginning at 130 m 
altitude with an initial flight path angle of 89.85°. These conditions provide the benchmark for 
validating the developed trajectory code under realistic launch scenarios. 

Table 4. Expected Burnout and Loss Results for Curtis Example 13.3 Validation Case 

Variable Simulated Reference % Error 
Altitude 110.406 𝑘𝑚 110.324 𝑘𝑚 0.074% 
Speed 5.737 𝑘𝑚/𝑠 5.737 𝑘𝑚/𝑠 0.000% 

Flight Path Angle 9.166 ° 9.154 ° 0.131% 
Drag Loss 0.298 𝑘𝑚/𝑠 0.298 𝑘𝑚/𝑠 0.000% 

Gravity Loss 1.410 𝑘𝑚/𝑠 1.410 𝑘𝑚/𝑠 0.000% 

Table 4 compares the simulated burnout results against the Curtis reference values. The 
agreement is excellent, with errors below 0.2% for all parameters. This confirms that 
aerodynamic drag, an exponential atmosphere, altitude-dependent gravity, and gravity-turn 
dynamics have been implemented correctly. The close match demonstrates that the developed 
3DOF model is capable of reliably reproducing standard textbook examples. Figure 3 shows the 
plots of altitude and velocity versus time, highlighting the burnout condition, the application of 
the pitch kick, and subsequent trajectory evolution. 

 

Figure 3. Altitude (km) and Velocity (m/s) vs Time (s) (Developed) 



 

Figure 4. Dynamic pressure (atm) and Downrange (km) vs Altitude (km) (Developed) 

The developed code (above) produces dynamic pressure and downrange–altitude trends that 
align very closely with the Curtis textbook example (below). Both solutions show a peak 
dynamic pressure of approximately 0.16 atm at around 9–10 km altitude, followed by a rapid 
decay as the vehicle ascends. The downrange–altitude profiles also match well, with a smooth 
increase in downrange distance and a final burnout altitude of ~110 km. These plots further 
confirm that the implemented 3DOF model accurately reproduces the Curtis Example 13.3 
results. 

 

Figure 5. Dynamic pressure (atm) and Downrange (km) vs Altitude (km) (Curtis Textbook) 



Staging validation: 

To begin the validation, the engine parameters for a simplified two-stage configuration are listed 
in Table 5, assuming constant gravity, zero drag and a kick of 0 degrees.  

Table 5. Engine Values for Simplified Centaur Launch 

Engine 𝑇ℎ𝑟𝑢𝑠𝑡 [𝑁] 𝐼𝑠𝑝 [𝑠] 𝑚𝑝,1 [𝑘𝑔] 𝑚𝑝,2 [𝑘𝑔] 
Core 4.893 ∗ 106 330 350000 22000 

Centaur 0.2036 ∗ 106 453.8 20000 7100 

The key mass calculations for the vehicle, after each burn and jettison event, are summarised 
below. From the thrust and specific impulse values, the effective exhaust velocity and mass 
flow rates for each stage can also be calculated. 

Table 6. Stage Mass Calculations and Effective Velocity and Mass Flow Rates 

Payload Mass: 
𝑚𝑝𝑙 = 20000 𝑘𝑔 

Calculating Total Mass: 
𝑚0,𝑣𝑒ℎ = (𝑚𝑝,1 + 𝑚𝑠,1) + (𝑚𝑝,2 + 𝑚𝑠,2) + 𝑚𝑝𝑙 = 419100 𝑘𝑔 

After Core Burn + Jettison: 
𝑚0,2 = 𝑚𝑓,1 − 𝑚𝑠,1 = 47100 𝑘𝑔 

End of Centaur 
𝑚𝑓,2 = 𝑚𝑠,2 + 𝑚𝑝𝑙 = 27100 𝑘𝑔 

 
Stage 𝑐 = 𝐼𝑠𝑝𝑔0 [𝑚/𝑠] 

𝑚̇ =
𝑇

𝑐
 [𝑘𝑔/𝑠] 

1 3237.3 1511.45 
2 4451.78 45.735 

Using these values, the analytical equations for burn time, burnout velocity, and burnout 
altitude can be applied to each stage to validate the trajectory model. 

Table 7. Analytical Validation of Multi-Stage Sounding Rocket 

Stage 1 (Core) 
Burn Time: 

𝑡𝑏𝑜,1 =
𝑚0,𝑣𝑒ℎ − 𝑚𝑓,1

𝑚1̇
=

419100 − 69100

1511.45
= 231.57 

Burnout Velocity: 

𝑣𝑏𝑜,1 = 𝑐1 ln (
𝑚0,𝑣𝑒ℎ

𝑚𝑓,1
) − 𝑔0𝑡𝑏𝑜,1 = 3237.3 ∗ ln (

419100

69100
) − 9.81 ∗ (231.57) = 3563.74 𝑚/𝑠 

Burnout Altitude: 

ℎ𝑏𝑜,1 =
𝑐1

𝑚1̇
[𝑚𝑓,1 ∗ ln

𝑚𝑓,1

𝑚0,𝑣𝑒ℎ
+ 𝑚0,𝑣𝑒ℎ − 𝑚𝑓,1] − 0.5𝑔0𝑡𝑏𝑜,1

2  

=
3237.7

1511.45
[69100 ∗ ln

69100

419100
+ 350000] − 0.5(9.91)(231.57)2 

= 219.85 𝑘𝑚 
 

  



Stage 2 (Core) 
Burn Time: 

𝑡𝑏𝑜,2 =
𝑚0,2 − 𝑚𝑓,2

𝑚2̇
=

47100 − 27100

45.735
= 437.31 𝑠 

Burnout Velocity: 

𝑣𝑏𝑜,2 = 𝑣𝑏𝑜,1 + 𝑐2 ln (
𝑚0,2

𝑚𝑓,2
) − 𝑔0𝑡𝑏𝑜,2 = 3563.74 + 4451.78 ∗ ln (

47100

27100
) − 9.81 ∗ (437.31)

= 2034.44 𝑚/𝑠 
Burnout Altitude: 

ℎ𝑏𝑜,1 = 𝑣𝑏𝑜,1𝑡𝑏𝑜,2

𝑐2

𝑚2̇
[𝑚𝑓,2 ∗ ln

𝑚𝑓,2

𝑚0,2
+ 𝑚0,2 − 𝑚𝑓,2] − 0.5𝑔0𝑡𝑏𝑜,2

2  

= (3563.74)(437.31) +
4451.78

45.735
[27100 ∗ ln

27100

47100
 + 20000] − 0.5(0.59.81)(437.31) 

= 1174.59 𝑘𝑚 
Totals at End of Stage 2: 

𝑡𝑏𝑜,𝑡𝑜𝑡 = 𝑡𝑏0,1 + 𝑡𝑏𝑜,2 = 668.87 𝑠 
𝑣𝑏𝑜,𝑡𝑜𝑡 = 2034.44 𝑚/𝑠 

ℎ𝑏𝑜,𝑡𝑜𝑡 = ℎ𝑏0,1 + ℎ𝑏𝑜,2 = 1394.44 𝑘𝑚 
 
Coast to Apogee 
Time to max altitude: 

𝑡𝑚𝑎𝑥 =
𝑣𝑏𝑜,𝑡𝑜𝑡

𝑔0
+ 𝑡𝑏𝑜,𝑡𝑜𝑡 =

2034.44

9.81
+ 668.87 = 1005.68 𝑠 

Maximum Altitude: 

ℎ𝑚𝑎𝑥 = ℎ𝑏𝑜,𝑡𝑜𝑡 + 𝑣𝑏𝑜,𝑡𝑜𝑡(𝑡𝑚𝑎𝑥 − 𝑡𝑏𝑜,𝑡𝑜𝑡) − 0.5𝑔0(𝑡𝑚𝑎𝑥 − 𝑡𝑏𝑜,𝑡𝑜𝑡)
2

  
= 1394.44 + 2034.44(336.81) − 0.5(9.81)(336.81)2 

= 1683.30 𝑘𝑚 
 

Table 8. Values from code 

Event Time (s) Altitude (km) Speed (km/s) Mass 
Liftoff mass − − − 419,100 𝑘𝑔 

CORE burnout 231.57 221.57 3.600 47,100 𝑘𝑔 

CENTAUR 
burnout 

668.88 1406.43 2.133 27,100 𝑘𝑔 

Max altitude  1013.18 1768.01 0.000 27, 100 𝑘𝑔 

Table 9. Analytically Calculated Values 

Event Time (s) Altitude (km) Speed (km/s) Mass 
Liftoff mass − − − 419,100 𝑘𝑔 

CORE burnout 231.57 219.85 3.563 47,100 𝑘𝑔 

CENTAUR 
burnout 

668.88 1394.44 2.034 27,100 𝑘𝑔 

Max altitude  1005.68 1683.30 0.000 27, 100 𝑘𝑔 



The tables above present a direct comparison between the numerical code outputs and the 
analytically calculated values for key flight events, allowing validation of the simulation against 
closed-form solutions. Table 10 below calculates the percentage error between the values from 
the code, and the analytical values. 

Table 10. Error Values 

Event Time (% 
ERROR) 

Altitude (% 
ERROR) 

Speed (ERROR) Mass (% 
ERROR) 

Liftoff mass − (𝑛/𝑎) − (𝑛/𝑎) − (𝑛/𝑎) 0.00% 

CORE burnout 0.00% +0.78% +0.037 𝑘𝑚/𝑠 0.00% 

CENTAUR 
burnout 

0.00% +0.86% +0.099 𝑘𝑚/𝑠 0.00% 

Max altitude +0.75% +5.03% − (𝑛/𝑎) 0.00% 

This table summarises the percentage error between the analytical and numerical results, 
showing excellent agreement at stage burnouts (<1% error) and a slightly larger but still 
acceptable deviation at maximum altitude (~5%). This validates the correct staging behaviour of 
the code, with Figure 6 below showing the altitude and velocity profiles over time, including the 
clear transitions at core burnout and Centaur separation. 

 

Figure 6. Altitude and velocity versus time for simplified 2 stage model 

Conclusion: 

Section 2 successfully validates the trajectory code by comparison with the Curtis textbook 
examples and the analytical multi-stage staging case. The close agreement in burnout times, 
velocities, and altitudes confirms that the implementation of the governing equations is correct, 
providing confidence that the code can be reliably applied to more complex launch vehicle 
simulations.  



Task 3. Using Your Validated Trajectory Code to Launch a Rocket to Orbit 

Introduction: 

With the trajectory code validated against Curtis’ textbook examples, the next step is to apply 
the model to a realistic launch vehicle. In this task, the Vulcan Centaur Launch System (VCLS) 
is simulated from liftoff through orbital insertion. The VCLS is United Launch Alliance’s next-
generation rocket, designed to succeed the Atlas V and Delta IV families, and can launch large 
payloads to Low Earth Orbit (LEO), Geostationary Transfer Orbit (GTO), and beyond. 

The vehicle configuration consists of a first stage powered by two BE-4 methane-oxygen engines 
and augmented by optional solid rocket boosters, and a Centaur upper stage powered by two 
RL10 hydrogen-oxygen engines. The trajectory simulation incorporates parallel staging of the 
boosters, series staging of the core and Centaur stages, aerodynamic drag, variable gravity with 
altitude, and a gravity-turn manoeuvre to achieve orbital velocity. 

The objective of this section is to demonstrate that the validated 3DOF model can be extended 
from simplified single-stage cases to a full multi-stage orbital launch, and to evaluate the 
performance of the Vulcan Centaur in reaching a 400 km circular Low Earth Orbit. 

 
Figure 7. Exploded view of the Vulcan Centaur rocket from United Launch Alliance 

  



Task 3 Initialisation: 

The following constants were defined to initialise the Task 4 Vulcan Centaur trajectory 
simulation. The setup also relies on several modelling assumptions, which are listed below for 
clarity. 

Key assumptions: 

• Atmosphere model: U.S. Standard Atmosphere 1976 is applied up to 100 km, with 
density set to zero above this altitude. 

• Gravity model: Gravity decreases with altitude. 

• Flat-Earth vs. curved-Earth: A curved-Earth formulation is used to account for trajectory 
geometry. 

• Aerodynamics: Constant drag coefficients are assumed, independent of Mach or 
Reynolds number. 

• Pitch manoeuvre: A commanded rate-based pitch-kick is applied at 1 km altitude, 
following the defined rate and duration. These values were found through trial and error. 

• Staging: Instantaneous propellant burnout and stage jettison events are assumed, with 
no residual propellant or separation delays. 

• Environment: No winds, perturbations, or Earth rotation effects are included. 

Table 11. Constant Values used for Task 4 Simulation 

Parameter Symbol Value Unit 

Initial altitude ℎ0 0.001 𝑚 

Initial velocity 𝑣0 0.001 𝑚/𝑠 
Initial flight path 

angle 
𝛾0 90.0 ° 

Initial downrange 𝑥0 0.0 𝑚 
Kick altitude ℎ𝑘𝑖𝑐𝑘 1000 𝑚 

Kick mode − 𝑅𝑎𝑡𝑒 − 
Kick rate 𝛾̇ 2.34 °/𝑠 

Kick duration − 11.995 𝑠 

Drag coefficient 
(core) 

𝐶𝐷 𝑐𝑜𝑟𝑒  0.32 − 

Drag coefficient 
(upper) 

𝐶𝐷 𝑐𝑒𝑛𝑡𝑎𝑢𝑟 0.3 − 

Sea-level density 𝜌0 1.225 𝑘𝑔/𝑚³ 
Core diameter − 5.4 𝑚 
Reference area 𝐴𝑟𝑒𝑓 22.9 𝑚² 

Payload mass 𝑚𝑃𝐿 20,000 𝑘𝑔 

Table 11 summarises the initial conditions and environmental parameters applied in the 
trajectory model. It includes the initial altitude, velocity, and flight-path angle, along with pitch-
kick settings, aerodynamic coefficients, and payload mass. These constants define the baseline 
setup for the Vulcan Centaur simulation. 



Table 12. Centaur Rocket Engine Values 

Stage Thrust (N) Isp (s) Propellant 
Mass (kg) 

Structure Mass 
(kg) 

SRB (x6) 2.061𝑒6 280.3 47853 4,521 
Core 4.900𝑒6 330.0 350,000 22,000 

Centaur 0.2036𝑒6 453.8 20,000 7,100 

Table 12 lists the thrust, specific impulse, propellant mass, and structural mass for each stage 
of the launch vehicle. It includes six solid rocket boosters, the core stage, and the Centaur 
upper stage, providing the key propulsion inputs for staging and trajectory analysis. The engine 
groups were defined to suit the class system established earlier in the report, with the six SRBs 
and the core stage burning in parallel during the first phase of flight, followed by the Centaur 
upper stage burning in series once the lower stages are jettisoned. 

# Parallel group 0: SRBs + CORE burning together 

group1 = [SRB, SRB, SRB, SRB, SRB, SRB, CORE] 

# Series group 1: upper stage burns after group0 is fully jettisoned 

group2 = [CENTAUR] 

SERIES_GROUPS = [group1, group2] 

Results: 

 

Figure 8. Altitude (km) and Velocity (m/s) vs Time (s) for Centaur Rocket 

The trajectory and velocity history of the Vulcan Centaur launch vehicle are shown in Figure 8. 
The top plot illustrates the altitude growth with time, while the bottom plot shows the 
corresponding velocity history. Both curves include key staging events: SRB separation, core 
separation, Centaur separation, and the pitch kick manoeuvre. As expected, the vehicle rapidly 
gains altitude during the first few hundred seconds while the SRB’s and core are active, followed 
by a more gradual increase under Centaur propulsion. After Centaur burnout, the vehicle 
continues to coast upwards, reaching its apogee before descending again. 



The velocity profile mirrors this behaviour. Velocity increases steadily during each powered 
stage, with the largest increments achieved during core and Centaur operation. Following 
Centaur cutoff, the velocity levels off and remains nearly constant until orbital apogee, after 
which gravitational effects begin to dominate. 

Table 13. Kick Events, Burnouts, and Jettisons During Ascent 

Event Time 
(s) 

Altitude 
(km) 

Downrange 
(km) 

Speed 
(km/s) 

γ (°) Mass 
(kg) 

Liftoff mass − − − − − 733,344 
Kick start (rate 
2.34°/s) 

11.75 1.00 0.0 0.175 90.00 662,752 

Kick end 23.75 4.12 1.0 0.390 55.84 590,636 
SRB jettison 63.96 28.80 28.1 1.581 36.44 322,432 

CORE jettison 231.69 180.45 526.0 6.026 9.87 47,100 
CENTAUR jettison 669.01 399.21 3444.3 7.600 1.51 27,100 

Table 13 summarises the key events, burnouts, and jettisons during the ascent of the Vulcan 
Centaur. The results confirm that the trajectory code correctly models staging, thrust cutoffs, 
and mass depletion throughout flight. After liftoff, a pitch kick begins at ~11.8 s, initiating the 
gravity turn. The SRBs burn out and separate around 64 s, reducing the vehicle mass from 
733,344 kg to 322,432 kg. Core burnout and separation occur at ~232 s, leaving 47,100 kg, while 
the Centaur upper stage provides the final Δv until ~669 s, after which only 27,100 kg remain—
consistent with the dry mass plus payload. 

The conditions for LEO Insertion occur at the Centaur jettison, where the vehicle reaches 
399.21 km altitude at 669.01 s. The velocity at this point is 7.600 km/s with a flight path angle of 
1.51°, representing near-horizontal motion suitable for orbit. The final mass of 27,100 kg 
matches the expected post-burnout value. These results place the orbital insertion altitude 
within 0.2% of the 400 km target and the velocity within 2.6% of the 7.8 km/s requirement—both 
comfortably inside the ±5% tolerance. 

Figure 9 below shows the trajectory which exhibits a smooth gravity turn, with apogee near 400 
km and several thousand kilometres downrange. Dynamic pressure peaks at ~0.8 atm around 
15–20 km altitude before falling rapidly as the atmosphere thins, consistent with realistic max-q 
behaviour. The flight path angle decreases from ~90° at liftoff to near horizontal by Centaur 
cutoff, with staging markers aligning closely to the natural γ trend. These features confirm the 
expected behaviour for orbital insertion. 



 

Figure 9. Key trajectory parameters showing (top) altitude versus downrange distance, (middle) 
dynamic pressure versus altitude, and (bottom) flight path angle versus time with staging events 

marked. 

Conclusion: 

Section 3 clearly fulfils the required task by presenting and analysing the key trajectory 
parameters of the ascent. The results illustrate a realistic gravity turn, accurate staging events, 
and physically consistent profiles of altitude, velocity, dynamic pressure, and flight path angle. 
Together, these plots demonstrate that the simulated trajectory behaves as expected for a 
launch vehicle targeting low Earth orbit.  
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Appendix: 

Lecture 5: Launch Vehicles 2: Time Resolved and Numerical Solutions Code (Put in Functions) 

import time 

import numpy as np 

from scipy.integrate import solve_ivp 

import matplotlib.pyplot as plt 

 

# === Define the ODE system === 

def f(t, y, m_0, m_f, m_dot_e, T, g_0): 

    m = m_0 - m_dot_e * t 

    v = y[0] 

    if m >= m_f: 

        dv_dt = T / m - g_0 

    else: 

        dv_dt = -g_0 

 

    dh_dt = v 

    dy_dt = [dv_dt, dh_dt] 

    return dy_dt 

 

# === Parameters from the example === 

m_0 = 68000.0             # Initial mass [kg] 

n = 7                     # Mass ratio 

m_f = m_0 / n             # Final mass [kg] 

T = 933910.0              # Thrust [N] 

I_sp = 390.0              # Specific impulse [s] 

g_0 = 9.81                # Gravitational acceleration [m/s^2] 

m_dot_e = T / (I_sp * g_0)  # Propellant mass flow rate [kg/s] 

 

# === Initial conditions === 

initial_time = 0.0        # [s] 

final_time = 400.0       # [s] 

initial_conditions = [0.0, 0.0]  # [v0, h0] 

steps_to_evaluate = 10000 

rtol = 1e-6 

atol = 1e-6 

 

def runsim(m_0, m_f, m_dot_e, T, g_0): 

 

# === Run simulation === 

    start_time = time.perf_counter() 

 

    solution = solve_ivp(lambda t, y: f(t, y, m_0, m_f, m_dot_e, T, g_0), 

                         t_span=[initial_time, final_time], 

                         y0=initial_conditions, 

                         method='RK45', 

                         dense_output=True, 



                         rtol=rtol, 

                         atol=atol, 

                         t_eval=np.linspace(initial_time, final_time, 

steps_to_evaluate)) 

 

    end_time = time.perf_counter() 

 

    # === Extract results === 

    time_results = solution.t 

    altitude = solution.y[1] 

    velocity = solution.y[0] 

 

    # Only keep data where altitude > 0 

    valid_indices = altitude > 0 

 

    # Filter arrays 

    time_results = time_results[valid_indices] 

    altitude_results = altitude[valid_indices] 

    velocity_results = velocity[valid_indices] 

     

    # === Find burnout and max altitude === 

    max_velocity = max(velocity_results) 

    max_velocity_index = list(velocity_results).index(max_velocity) 

    burnout_time = time_results[max_velocity_index] 

    burnout_altitude = altitude_results[max_velocity_index] 

 

    maximum_altitude = max(altitude_results) 

    maximum_altitude_index = 

list(altitude_results).index(maximum_altitude) 

    maximum_altitude_time = time_results[maximum_altitude_index] 

 

    # === Output === 

    print(f"Calculation took {(end_time - start_time)*1000.0:.2f} ms") 

    print(f"rtol = {rtol:.0e}, atol = {atol:.0e}") 

    print(f"Burn out velocity is {max_velocity:.1f} m/s") 

    print(f"Burn out time is {burnout_time:.1f} s") 

    print(f"Burn out altitude is {burnout_altitude/1000.0:.1f} km") 

    print(f"Maximum altitude is {maximum_altitude/1000.0:.1f} km") 

    print(f"Maximum altitude time is {maximum_altitude_time:.1f} s") 

 

    # === Plotting === 

    plt.figure(figsize=(10, 5)) 

    plt.subplot(1, 2, 1) 

    plt.plot(time_results, velocity_results) 

    plt.xlabel('Time [s]') 

    plt.ylabel('Velocity [m/s]') 

    plt.title('Rocket Velocity vs Time') 

 



    plt.subplot(1, 2, 2) 

    plt.plot(time_results, altitude_results) 

    plt.xlabel('Time [s]') 

    plt.ylabel('Altitude [km]') 

    plt.title('Rocket Altitude vs Time') 

    plt.tight_layout() 

    plt.show() 

 

    return 

 

runsim(m_0, m_f, m_dot_e, T, g_0) 
 


