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Executive Summary

This report chronicles the construction, verification, and utilization of a three-degree-of-
freedom (3DOF) multi-stage rocket trajectory code for AERO4800. The task involved modelling
United Launch Alliance’s Vulcan Centaur Launch System (VCLS) ascent from liftoff to staging,
gravity turn, and orbital insertion. The effort was separated into three large phases: code
construction, verification with analytical and textbook benchmarks, and utilization for a typical
orbital launch simulation.

In Part 1, a generic trajectory solver was written in Python to model thrust, drag, gravitational
changes with height, mass losses, and parallel and series staging. The solver was made user-
specified stage parameter and gravity-turn profiles compatible. Modularity, with a flowchart and
code walkthroughs, was used to allow for transparency and reproducing abilities.

Part 2 also verified the solver with known analytical and numerical standards, such as Curtis’
Example 13.2/13.3, and an analytical staging solution. Such comparisons verified proper thrust
and mass depletion modelling, stage transition, and gravity/drag loss calculations. Results
exhibited excellent correlation with desired velocity, height, and burnout conditions, giving firm
confidence in solver reliability.

Part 3 applied the validated solver to the Vulcan Centaur launch vehicle, configured with an
appropriate number of solid rocket boosters and realistic propulsion parameters. The
simulation successfully demonstrated insertion of a 20-tonne payload into a 400 km circular
low Earth orbit within the £10% payload tolerance and +5% trajectory requirements specified in
the assignment. The trajectory captured key mission events such as max-q, booster separation,
core burnout, and Centaur final insertion, with results supported by time histories, event tables,
and trajectory plots.

In summary, the solver developed is robust and accurate in modelling real orbital ascent
problems. The Vulcan Centaur case study supported that such a system can be launched into
orbit with appropriate staging and flight-path control to meet assignment requirements. Beyond
academic verification, the report shows broader applicability of trajectory modelling to real
launcher design, mission planning, and performance assessment.
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Task 1. Develop a 3DOF Multi-Stage Rocket Trajectory Code

Introduction

This section presents the development of a three degree of freedom trajectory solver for a
multistage launch vehicle. The goal was to make use of the simple vertical solver from Lecture
5: Launch Vehicles 2: Time Resolved and Numerical Solutions and modify it to accommodate
the requirements of the task. This code can be found in the Appendix. These requirements being
a python script that can model:

e Velocity

e Altitude

e Downrange Distance

e Flight Path Angle

e Variable Vehicle mass with time (from Thrust, Isp and propellant)

e Aerodynamic drag with altitude-dependent density

e Aprogrammed pitch over manoeuvre to initiate a gravity turn trajectory

Curtis Examples 13.2/13.3 will be used to validate as they include all the essential ingredients
of a practical launch (thrust, drag, variable gravity, atmosphere, pitch over), whilst providing
clear analytical solutions allowing for accurate verification. Successfully reproducing Curtis
13.2/13.3 provides confidence that the solver is accurate and extensible, thereby meeting the
requirements of Part 1 and Part 2 of the assignment brief.

Table 1. Equations of Motion from Curtis Ch13 - Used as base for Updated Code.

Velocity change over time

dv T D _
—=————gsin
dt m m gsty
T is thrust, m is instantaneous mass, D is drag, g is local gravity and y is flight-path angle.

Flight path angle over time

dy 1 v?

@ =0 m )
v is instantaneous velocity, Ry is the radius of Earth (6,371 km) and h is altitude
Altitude change over time

dh .
P vsiny
Downrange Distance over time
dx  Rg
dt ~ Ry + 'Y
Mass depletion over time
dm, T
dt Isp90

I, is the Specific Impulse of the Rocket Engine, and g, is gravity at sea level (9.81 m/s)
Aerodynamic Drag

1
D= E‘OUZACD

p is atmospheric density, A is reference area, and Cj, is the drag coefficient.




Vehicle Modelling

The solver represents the vehicle using three classes:

1. Class StageElement:

This class represents a single physical rocket element, such as a core stage, solid rocket
booster, or an upper stage. Each element stores its fundamental design parameters:

e Name (e.g. Core)

e ThrustT [N], assumed constant during burn

e Specificimpulse I, [s], used to calculate effective exhaust velocity and propellant
mass flow rate

e Propellant mass my,,, [kg], the initial usable propellant carried by this element.

e Structural mass mg ot [kg], representing tanks, engines, avionics, etc.
From these properties the propellant flow rate is derived:

T
Ispgo

Mme =

This quantity determines how quickly the element consumes its propellant during powered
flight. Additionally, a state index is attached to each element so that the remaining propellant
can be tracked during integration.

2. Class StageGroup:

This class groups multiple elements that burn in parallel. For example, several strap on
boosters, and a core stage could all form one StageGroup. All elements in a StageGroup ignite
together and contribute thrust simultaneously until each StageElement’s propellant is depleted.

3. Class Vehicle:

This class provides the system level representation of the launch vehicle in the 3DOF solver. The
Vehicle class ties the various StageGroup’s together into a full multistage launch system that
can be integrated through the equations of motion. For example:

e Group 1: Boosters and core stage burning in parallel.
e Group 2: Upper stage operating after booster separation.

The class operates using 5 Functions.

1. Initial State construction:
o Kinematic variables: velocity, altitude, downrange distance, flight path angle.
o Per-elementvariables: remaining propellant mass and a structural “attached” flag (1
= carried, 0 = jettisoned).
2. Active group logic:
e Determines which StageGroup is currently contributing Thrust by always selecting
the lowest-index group still attached.
3. Mass Accounting:
e Computes the instantaneous vehicle mass by summing payload, all attached
structural masses, and any remaining propellant across all elements.



e This ensures that inactive upper stages contribute dead weight until their turn to
burn.
4. Force Generation:
e Computes the total thrust and mass flow rate from the active group only, so that only
burning engines contribute to acceleration while other stages remain inert
5. Jettison logic:
e Checks whether individual elements or entire groups have exhausted their
propellant.
e Once empty, their structural flags are set to zero, removing their structural mass
from the vehicle and ensuring realistic staging behaviour.

Making use of these functions, the Vehicle class ties the entire solver together. It determines
which stages are burning, how the total mass evolves with time, when staging events occur, and
what forces act on the vehicle at each timestep. This abstraction makes the solver modular and
extensible — even though Curtis Example 13.3 involves only a single stage, the same framework
would seamlessly support realistic multi-stage launch vehicles such as required in Task 3.

Atmosphere, Gravity and Drag Models:

Two different atmosphere models are implemented in the code able to be switched using
set_atmosphere(“model”).

Table 2. Summary of Atmosphere, Gravity and Drag Models

Exponential Scale Height (“scale”):

= poewn(~)
p=poexp (=1

po = 1.225 kg/m3 and H = 7500 m

US Standard Atmosphere 1976 ("US"):

This model makes use of recorded density data up to an altitude of 100 km and linearly
interpolates, for realism in Task 3. This is done in python using:

Additionally, the function also returns a density of 0.0 if above 100 km altitude.

Gravity:

9o
2

(1+R—hE)

gth) =

Drag:
The drag calculation makes use of the formula defined in the Equations of Motion section
above, using a defined Reference Area, Ag,r and Drag Coefficient Cp.




Pitch over Kick:

In practice, a small, commanded pitch over is required to initiate the turn. Two modes are
implemented :

e |nstant kick: a discrete reduction in y applied at the trigger altitude.

if kick_mode.lower() == "instant":

gamB = gamA - np.deg2rad(kick_delta_deg)
y0 B = y kick fixed.copy()
y@ B[3] = gamB

e Rate kick: a constant commanded y applied for a specified time.
elif kick mode.lower() == "rate":

y0 B = y kick fixed.copy()
gamma_rate rad = -np.deg2rad(kick rate deg s)

Both methods seed the gravity turn while maintaining physical plausibility for actuator limits.
After the kick, the natural gravity turn’s dynamics dominate, progressively aligning the vehicle
with the local horizontal.

Gravity Turn Dynamics:

Once a pitch over altitude is reached, the rocket transitions from vertical ascent into a gravity
turn. The flight path angle y evolves according to:

e Flat Earth Model
V. = ——Cosy

e Curved Earth Model

. 9 v

== o
The curved formulation includes the geometric effect of Earth’s surface curvature, preventing
over-flattening at high velocity. Physically, these relations describe how the vertical component
of gravity continuously reduces the flight path angle. As the vehicle accelerates, the term %
diminishes, causing the trajectory to gradually flatten without active steering input. The function
that enforces the gravity turn dynamics can be seen below. To prevent computational errors, the
flight path angle is held constant at 90° until the programmed pitch kick is applied, ensuring
stability in the simulation.



EOM_staged Function:

The complete dynamics of the launch are evaluated through the custom eom_staged function,
which numerically integrates the governing equations of motion for a multi-stage vehicle. This
function builds directly on the theoretical framework from the Curtis (2020) equations above,
and the Lecture 5 Solver in the appendix. The functionality is outlined in Figure 1 (Flowchart).

The state vector is defined as:

y=[v,hx,y,po .. Dn-1,50 - SN-1]

where v is velocity, h altitude, x downrange distance, y flight path angle, p; the remaining
propellant in element i, and s; a binary flag for whether that element’s structure is still attached.

runsim_full Function:

The runsim_full routine integrates the two-dimensional point-mass rocket equations through
liftoff, optional pitch over, and ascent until either ground impact or a set final time.

Segment A (Initial Integration):

Starts at t = 0 with near-zero velocity, altitude, and downrange; y = 90°. Active models: thrust,
drag, gravity, atmosphere, mass depletion, staging. The gravity-turn law is held off (y = 0) until a
kick trigger. Event monitors include:

e Kickaltitude (h = hycx)
e Ground contact(h < 0ondescent)
e Finaltime stops

Integration halts at the first event: reaching kick altitude (» kick handling), hitting ground
(terminate), or final time (terminate).

Kick Handling:
At h_kick, the state is continuous (mass, velocity preserved). Only y is modified:

e Instant kick: discrete Ay applied in one step
e Rate kick: y slewed smoothly over Aty;ck, With [V < Vimax
Both maintain continuity and enable gravity-turn dynamics immediately.

Segment B (Post-Kick):
Integration resumes with the guidance law:

. 9 v

== g e
staging logic, and termination at ground or final time.

Outputs:
e SegmentsAandB
o Kick metadata (event, mode, 4y, Ymax)

e Event stamps (SRB separation, cutoffs)



o Diagnostics: drag/gravity losses, max g, apoapsis/periapsis

Stability Features:

Ground events override kicks if near simultaneous. States evolve without resets. Gates prevent
chatter at thresholds; y limited to £170° with cosine safeguards. In rate mode, unfinished Ay is
carried forward.

This modular design supports both idealised (instant) and realistic (rate-limited) manoeuvres
while meeting requirements to model drag, gravity losses, staging, and gravity turns for the
Vulcan Centaur.

Interactive_Plot Function:

In addition to the core trajectory solver, an auxiliary function interactive_plot was implemented
to improve post-processing and visualisation. This routine allows the user to select any stored
simulation variable (e.g., velocity, altitude, dynamic pressure, flight path angle) for plotting
against another, without modifying the code manually.

The function operates in a loop:
o |tfirst prints a list of available keys in the dataset.
e The user specifies an x-axis variable (commonly time or downrange distance).
e One or more y-axis variables can then be selected for overlay on the same figure.

e Event markers such as kick altitude, stage separations, or fairing jettison are
automatically added to the plot if enabled.

This interactivity makes it straightforward to explore relationships between quantities. Although
not essential to the trajectory integration itself, this feature is a useful convenience tool for
rapidly comparing different simulation outputs, diagnosing anomalies, and generating
customised figures for reports.



Flowchart of Code Functions:

To clearly outline how the simulation operates, a flowchart of the code functions is
presented in Figure 1. This diagram summarises the logical sequence of the trajectory
solver, from defining initial parameters and vehicle properties through to the integration
of the equations of motion, event handling, staging logic, and final post-processing of
results. By breaking the code into modular steps, the flowchart highlights how each part
of the solver interacts, ensuring that complex behaviours such as pitch-kicks, staging,
and validation are implemented in a structured and transparent way.

Figure 1. Flowchart of trajectory simulation code functions
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- Build VEHICLE
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Compute mass, thrust, mdot
Compute drag (Cd, A, p)
Update dynamics: dvidt, dh/dt, dwidt, dy/dt
Apply gravity turn law
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Burn propellant (dp/dt)
Jettison logic (ds/dt)
¥
RUMNSIM_FULLD) N COLLECT RESULTS »| POSTPROCESS End
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h
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Validation printout

¥
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L )
Segment A: integrate from =0 uniil {kick OR ground}
tb If ground first — STOP
= If kick triggered — prepare Segment B
Instant kick: apply Ay immediately
Rate kick: apply ¥ over duration
Segment B: continue integration until impact or t_final




Task 2. Validation of Your 3DOF Trajectory Code

Introduction

In this section, the simulation code and equations of motion developed previously are applied
to reproduce and compare against the worked examples presented by Curtis in Sections 73.2
and 73.3. These textbook cases provide reference trajectories for simplified single-stage
rockets, first in vacuum (Example 13.2) and then including atmospheric drag and a gravity-turn
manoeuvre (Example 13.3). By implementing the same assumptions and initial conditions
within the numerical model, the results obtained here can be directly compared with Curtis’
solutions, allowing the accuracy of the code to be validated and the influence of drag and
gravity-turn dynamics to be assessed.

Example 13.2

Table 3 lists the expected burnout and apex conditions from Curtis Example 13.2, which were
used as a benchmark for validating the trajectory code. The case assumes a vertical trajectory
with no drag, constant gravity at sea-level g, = 9.81 m/s, constant thrust, and a mass ratio of 7.
Under these assumptions, the Python implementation reproduced the reference results with
excellent accuracy: the simulated burnout time, altitude, velocity, and maximum altitude all
matched the reference case within 0.05% error. This strong agreement confirms that the
governing equations and the propellant mass depletion model were implemented correctly.

Table 3. Expected Burnout and Apex Results for Curtis Example 13.2 Validation Case

Variable Simulated Reference % Error
Time to burnout 238.8s 238.8s —0.000%
Burnout altitude 337.7 km 337.6 km 0.036%

Burnout speed 5.102 km/s 5.102 km/s 0.005%
Maximum altitude 1664.6 km 1664.6 km —0.002%
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Figure 2. Trajectory validation against Curtis Example 13.2 (Developed)



Figure 2 illustrates the simulated altitude and velocity histories. The behaviour is consistent
with that expected for a rocket in vacuum: a smooth increase in altitude and velocity during
powered flight, followed by a coasting phase where altitude continues to rise while velocity
decreases under gravity. The close agreement with the Curtis reference results provides strong
validation of the developed code for this simplified single-stage case.

Example 13.3

At burnout, Curtis Example 13.3 predicts an altitude of 110.324 km, a velocity of 5.737 km/s,
and a flight-path angle of 9.154°, with corresponding velocity losses of 0.298 km/s due to drag
and 1.410 km/s due to gravity. These results are based on the assumptions of constant thrust, a
fixed drag coefficient of 0.5, an exponential atmosphere with a scale height of 7.5 km, and
variable gravity with altitude. The trajectory also incorporates a pitchover beginning at 130 m
altitude with an initial flight path angle of 89.85°. These conditions provide the benchmark for
validating the developed trajectory code under realistic launch scenarios.

Table 4. Expected Burnout and Loss Results for Curtis Example 13.3 Validation Case

Variable Simulated Reference % Error
Altitude 110.406 km 110.324 km 0.074%
Speed 5.737 km/s 5.737 km/s 0.000%
Flight Path Angle 9.166° 9.154° 0.131%
Drag Loss 0.298 km/s 0.298 km/s 0.000%
Gravity Loss 1.410 km/s 1.410 km/s 0.000%

Table 4 compares the simulated burnout results against the Curtis reference values. The
agreement is excellent, with errors below 0.2% for all parameters. This confirms that
aerodynamic drag, an exponential atmosphere, altitude-dependent gravity, and gravity-turn
dynamics have been implemented correctly. The close match demonstrates that the developed
3DOF modelis capable of reliably reproducing standard textbook examples. Figure 3 shows the
plots of altitude and velocity versus time, highlighting the burnout condition, the application of
the pitch kick, and subsequent trajectory evolution.
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Figure 3. Altitude (km) and Velocity (m/s) vs Time (s) (Developed)
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Figure 4. Dynamic pressure (atm) and Downrange (km) vs Altitude (km) (Developed)

The developed code (above) produces dynamic pressure and downrange-altitude trends that
align very closely with the Curtis textbook example (below). Both solutions show a peak
dynamic pressure of approximately 0.16 atm at around 9-10 km altitude, followed by a rapid
decay as the vehicle ascends. The downrange-altitude profiles also match well, with a smooth
increase in downrange distance and a final burnout altitude of ~110 km. These plots further
confirm that the implemented 3DOF model accurately reproduces the Curtis Example 13.3
results.
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Figure 5. Dynamic pressure (atm) and Downrange (km) vs Altitude (km) (Curtis Textbook)



Staging validation:

To begin the validation, the engine parameters for a simplified two-stage configuration are listed
in Table 5, assuming constant gravity, zero drag and a kick of 0 degrees.

Table 5. Engine Values for Simplified Centaur Launch

Engine Thrust [N] Isp [s] My 1 [kg] My [kg]
Core 4.893 % 10° 330 350000 22000
Centaur 0.2036 * 10° 453.8 20000 7100

The key mass calculations for the vehicle, after each burn and jettison event, are summarised
below. From the thrust and specific impulse values, the effective exhaust velocity and mass
flow rates for each stage can also be calculated.

Table 6. Stage Mass Calculations and Effective Velocity and Mass Flow Rates

Payload Mass:
my; = 20000 kg
Calculating Total Mass:
Mowen = (M1 +Mgy) + (Mo +mg,) +my = 419100 kg

After Core Burn + Jettison:

mo'z = mf'l — msll = 47100 kg
End of Centaur

Mms, = Mgy +my, = 27100 kg

Stage c=1 m/s T
g sng [ / ] — ; [kg/S]
1 3237.3 1511.45
2 4451.78 45.735

Using these values, the analytical equations for burn time, burnout velocity, and burnout
altitude can be applied to each stage to validate the trajectory model.

Table 7. Analytical Validation of Multi-Stage Sounding Rocket

Stage 1 (Core)
Burn Time:

Moven —Mp1 419100 — 69100
thoq = — == = 23157
bo,1 my 1511.45

Burnout Velocity:

Moven 419100
Vpo1 = C11n moy ) Gotpos = 3237.3 * ln( 29100 ) —9.81 % (231.57) = 3563.74 m/s
Burnout Altitude:
C1 1
hpoq1 = [mf 1 *In + Mo pen — Ms1] — 0.59otho1
mO veh
32377 [6 0, 350000] 0.5(9.91)(231.57)2
1511 45 419100 ' ' '

= 219.85 km




Stage 2 (Core)
Burn Time:
Moy —Mey 47100 — 27100

= = 437.31
m, 45.735 s

tho2 =

Burnout Velocity:

Mo, 47100
Vpo2 = Vpo1 + C2In| —=| = gotpo = 3563.74 + 4451.78 * 1n< ) —9.81 % (437.31)

ms 27100
= 2034.44 m/s
Burnout Altitude:
Cy msz 2
Rpo1 = Vboatboz 5 [My 2 ¥ In——=+4+mg, —ms ;] — 0.5g¢tp, 2
msp M,z

(3563.74)(437.31) + 4451.78 [27100 n 27100
= . . —_— *
45.735 " 247100

= 1174.59 km

+ 20000] —0.5(0.59.81)(437.31)

Totals at End of Stage 2:
thotot = thoa + o = 668.87 s
Vpotot = 2034.44m/s
Rpotor = hpo1 + hpoz = 1394.44 km

Coast to Apogee

Time to max altitude:
VUpo,tot 2034.44
Unax = 9 t thotot = 981 + 668.87 = 1005.68 s

Maximum Altitude:

2
hmax = hbo,tot + vbo,tot(tmax - tbo,tot) - 0-5g0 (tmax - tbo,tot)
= 1394.44 + 2034.44(336.81) — 0.5(9.81)(336.81)2

= 1683.30 km
Table 8. Values from code
Event Time (s) Altitude (km) Speed (km/s) Mass
Liftoff mass — - — 419,100 kg
CORE burnout 231.57 221.57 3.600 47,100 kg
CENTAUR 668.88 1406.43 2.133 27,100 kg
burnout
Max altitude 1013.18 1768.01 0.000 27,100 kg
Table 9. Analytically Calculated Values
Event Time (s) Altitude (km) Speed (km/s) Mass
Liftoff mass - - - 419,100 kg
CORE burnout 231.57 219.85 3.563 47,100 kg
CENTAUR 668.88 1394.44 2.034 27,100 kg
burnout
Max altitude 1005.68 1683.30 0.000 27,100 kg




The tables above present a direct comparison between the numerical code outputs and the
analytically calculated values for key flight events, allowing validation of the simulation against
closed-form solutions. Table 70 below calculates the percentage error between the values from
the code, and the analytical values.

Table 10. Error Values

Event Time (% Altitude (% Speed (ERROR) | Mass (%
ERROR) ERROR) ERROR)

Liftoff mass —(n/a) —(n/a) —(n/a) 0.00%

CORE burnout 0.00% +0.78% +0.037 km/s 0.00%

CENTAUR 0.00% +0.86% +0.099 km/s 0.00%

burnout

Max altitude +0.75% +5.03% —(n/a) 0.00%

This table summarises the percentage error between the analytical and numerical results,
showing excellent agreement at stage burnouts (<1% error) and a slightly larger but still
acceptable deviation at maximum altitude (~5%). This validates the correct staging behaviour of
the code, with Figure 6 below showing the altitude and velocity profiles over time, including the
clear transitions at core burnout and Centaur separation.
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Figure 6. Altitude and velocity versus time for simplified 2 stage model
Conclusion:

Section 2 successfully validates the trajectory code by comparison with the Curtis textbook
examples and the analytical multi-stage staging case. The close agreement in burnout times,
velocities, and altitudes confirms that the implementation of the governing equations is correct,
providing confidence that the code can be reliably applied to more complex launch vehicle
simulations.



Task 3. Using Your Validated Trajectory Code to Launch a Rocket to Orbit

Introduction:

With the trajectory code validated against Curtis’ textbook examples, the next step is to apply
the model to a realistic launch vehicle. In this task, the Vulcan Centaur Launch System (VCLS)
is simulated from liftoff through orbital insertion. The VCLS is United Launch Alliance’s next-
generation rocket, designed to succeed the Atlas V and Delta IV families, and can launch large
payloads to Low Earth Orbit (LEO), Geostationary Transfer Orbit (GTO), and beyond.

The vehicle configuration consists of a first stage powered by two BE-4 methane-oxygen engines
and augmented by optional solid rocket boosters, and a Centaur upper stage powered by two
RL10 hydrogen-oxygen engines. The trajectory simulation incorporates parallel staging of the
boosters, series staging of the core and Centaur stages, aerodynamic drag, variable gravity with
altitude, and a gravity-turn manoeuvre to achieve orbital velocity.

The objective of this section is to demonstrate that the validated 3DOF model can be extended
from simplified single-stage cases to a full multi-stage orbital launch, and to evaluate the
performance of the Vulcan Centaur in reaching a 400 km circular Low Earth Orbit.
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Figure 7. Exploded view of the Vulcan Centaur rocket from United Launch Alliance



Task 3 Initialisation:

The following constants were defined to initialise the Task 4 Vulcan Centaur trajectory
simulation. The setup also relies on several modelling assumptions, which are listed below for
clarity.

Key assumptions:

e Atmosphere model: U.S. Standard Atmosphere 1976 is applied up to 100 km, with
density set to zero above this altitude.

e Gravity model: Gravity decreases with altitude.

e Flat-Earth vs. curved-Earth: A curved-Earth formulation is used to account for trajectory
geometry.

e Aerodynamics: Constant drag coefficients are assumed, independent of Mach or
Reynolds number.

e Pitch manoeuvre: Acommanded rate-based pitch-kick is applied at 1 km altitude,
following the defined rate and duration. These values were found through trial and error.

e Staging: Instantaneous propellant burnout and stage jettison events are assumed, with
no residual propellant or separation delays.

o Environment: No winds, perturbations, or Earth rotation effects are included.

Table 11. Constant Values used for Task 4 Simulation

Parameter Symbol Value Unit
Initial altitude hy 0.001 m
Initial velocity Vg 0.001 m/s
Initial flight path Yo 90.0 °
angle
Initial downrange Xo 0.0 m
Kick altitude Riick 1000 m
Kick mode — Rate —
Kick rate y 2.34 °/s
Kick duration — 11.995 s
Drag coefficient Cp core 0.32 -
(core)
Drag coefficient Cp centaur 0.3 -
(upper)

Sea-level density Po 1.225 kg/m?
Core diameter — 5.4 m
Reference area Arer 22.9 m?
Payload mass mpy, 20,000 kg

Table 11 summarises the initial conditions and environmental parameters applied in the
trajectory model. It includes the initial altitude, velocity, and flight-path angle, along with pitch-
kick settings, aerodynamic coefficients, and payload mass. These constants define the baseline
setup for the Vulcan Centaur simulation.



Table 12. Centaur Rocket Engine Values

Stage Thrust (N) Isp (s) Propellant Structure Mass
Mass (kg) (kg)
SRB (x6) 2.061e6 280.3 47853 4,521
Core 4.900e6 330.0 350,000 22,000
Centaur 0.2036e6 453.8 20,000 7,100

Table 12 lists the thrust, specific impulse, propellant mass, and structural mass for each stage
of the launch vehicle. It includes six solid rocket boosters, the core stage, and the Centaur
upper stage, providing the key propulsion inputs for staging and trajectory analysis. The engine
groups were defined to suit the class system established earlier in the report, with the six SRBs
and the core stage burning in parallel during the first phase of flight, followed by the Centaur
upper stage burning in series once the lower stages are jettisoned.

[SRB, SRB, SRB, SRB, SRB, SRB, CORE]
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Figure 8. Altitude (km) and Velocity (m/s) vs Time (s) for Centaur Rocket

The trajectory and velocity history of the Vulcan Centaur launch vehicle are shown in Figure 8.
The top plotillustrates the altitude growth with time, while the bottom plot shows the
corresponding velocity history. Both curves include key staging events: SRB separation, core
separation, Centaur separation, and the pitch kick manoeuvre. As expected, the vehicle rapidly
gains altitude during the first few hundred seconds while the SRB’s and core are active, followed
by a more gradual increase under Centaur propulsion. After Centaur burnout, the vehicle
continues to coast upwards, reaching its apogee before descending again.



The velocity profile mirrors this behaviour. Velocity increases steadily during each powered
stage, with the largest increments achieved during core and Centaur operation. Following
Centaur cutoff, the velocity levels off and remains nearly constant until orbital apogee, after
which gravitational effects begin to dominate.

Table 13. Kick Events, Burnouts, and Jettisons During Ascent

Event Time Altitude Downrange Speed vy (°) Mass
(s) (km) (km) (km/s) (kg)

Liftoff mass — — — — — 733,344
Kick start (rate 11.75 1.00 0.0 0.175 90.00 | 662,752
2.34°/s)

Kick end 23.75 4.12 1.0 0.390 55.84 | 590,636
SRB jettison 63.96 28.80 28.1 1.581 36.44 | 322,432
CORE jettison 231.69 180.45 526.0 6.026 9.87 47,100
CENTAUR jettison | 669.01 399.21 3444.3 7.600 1.51 27,100

Table 13 summarises the key events, burnouts, and jettisons during the ascent of the Vulcan
Centaur. The results confirm that the trajectory code correctly models staging, thrust cutoffs,
and mass depletion throughout flight. After liftoff, a pitch kick begins at ~11.8 s, initiating the
gravity turn. The SRBs burn out and separate around 64 s, reducing the vehicle mass from
733,344 kg to 322,432 kg. Core burnout and separation occur at ~232 s, leaving 47,100 kg, while
the Centaur upper stage provides the final Av until ~669 s, after which only 27,100 kg remain—
consistent with the dry mass plus payload.

The conditions for LEO Insertion occur at the Centaur jettison, where the vehicle reaches
399.21 km altitude at 669.01 s. The velocity at this pointis 7.600 km/s with a flight path angle of
1.51°, representing near-horizontal motion suitable for orbit. The final mass of 27,100 kg
matches the expected post-burnout value. These results place the orbital insertion altitude
within 0.2% of the 400 km target and the velocity within 2.6% of the 7.8 km/s requirement—both
comfortably inside the +5% tolerance.

Figure 9 below shows the trajectory which exhibits a smooth gravity turn, with apogee near 400
km and several thousand kilometres downrange. Dynamic pressure peaks at ~0.8 atm around
15-20 km altitude before falling rapidly as the atmosphere thins, consistent with realistic max-q
behaviour. The flight path angle decreases from ~90° at liftoff to near horizontal by Centaur
cutoff, with staging markers aligning closely to the natural y trend. These features confirm the
expected behaviour for orbital insertion.
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Figure 9. Key trajectory parameters showing (top) altitude versus downrange distance, (middle)

dynamic pressure versus altitude, and (bottom) flight path angle versus time with staging events

marked.

Conclusion:

Section 3 clearly fulfils the required task by presenting and analysing the key trajectory
parameters of the ascent. The results illustrate a realistic gravity turn, accurate staging events,
and physically consistent profiles of altitude, velocity, dynamic pressure, and flight path angle.
Together, these plots demonstrate that the simulated trajectory behaves as expected for a
launch vehicle targeting low Earth orbit.
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Appendix:

Lecture 5: Launch Vehicles 2: Time Resolved and Numerical Solutions Code (Put in Functions)

import time

import numpy as np

from scipy.integrate import solve ivp
import matplotlib.pyplot as plt

f(t, y, m©, m f, m dot e, T, g 0):
m=m®o - mdot e * t
v = y[e]
if m >=m_f:
dv dt =T/ m- g o
else:
dv dt = -g 0

dh_dt = v
dy_dt [dv_dt, dh_dt]
return dy_dt

68000.0

initial time = 0.0

final time = 400.0

initial conditions = [0.0, 0.0]
steps to evaluate = 10000

rtol = le-6

atol = 1le-6

runsim(m_©, m_f, m dot e, T, g 0):

start_time = time.perf_counter()

solution = solve ivp( t, y: f(t, y, mo, m f, m dot e, T, g 0),
t _span=[initial time, final time],
y@=initial conditions,
method="RK45",
dense output=




rtol=rtol,

atol=atol,

t_eval=np.linspace(initial_time, final time,
steps_to evaluate))

end time = time.perf counter()

time results = solution.t
altitude = solution.y[1]
velocity = solution.y[@]

valid indices = altitude > ©

time results = time_results[valid indices]
altitude results = altitude[valid_indices]
velocity results = velocity[valid indices]

max_velocity = max(velocity results)

max_velocity index = list(velocity_ results).index(max_velocity)
burnout_time = time_results[max_velocity index]
burnout_altitude = altitude results[max_velocity index]

maximum_altitude = max(altitude_results)

maximum_altitude_index =
list(altitude_results).index(maximum_altitude)

maximum _altitude time = time results[maximum_altitude index]

print(f"Calculation took {(end_time - start_time)*1000.0:.2f} ms")
print(f"rtol = {rtol:.0e}, atol = {atol:.@e}")

print(f"Burn out velocity is {max_velocity:.1f} m/s")

print(f"Burn out time is {burnout_time:.1f} s")

print(f"Burn out altitude is {burnout_altitude/1000.0:.1f} km")
print(f"Maximum altitude is {maximum_altitude/1000.0:.1f} km")
print(f"Maximum altitude time is {maximum_altitude time:.1f} s")

plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.plot(time_results, velocity results)
plt.xlabel('Time [s]"')
plt.ylabel('Velocity [m/s]")
plt.title('Rocket Velocity vs Time')




plt.
plt.
.xlabel('Time [s]")
.ylabel('Altitude [km]")
.title('Rocket Altitude vs Time')
.tight layout()

plt
plt
plt
plt

plt.

subplot(1, 2, 2)
plot(time_results, altitude_results)

show()

return

runsim(m @, m £, m dot e, T, g @)



