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Executive Summary

This report presents the development and application of a numerical modelling framework to evaluate
interplanetary transfer trajectories from Earth to Mars, with specific emphasis on the use of atmo-
spheric aerocapture as a mission optimisation strategy. The analysis, implemented in Python using the
hapsira astrodynamics package, models complete Earth–Mars transfers from a 400 km circular park-
ing orbit to a 300 km Mars orbit. The methodology includes planetary ephemeris generation, Lambert
transfer solutions, hyperbolic excess and ∆v calculations, and comparative assessment of propulsive and
aerocapture-assisted capture strategies. Validation against Curtis (Orbital Mechanics for Engineering
Students, Example 8.8) confirmed excellent agreement in both orbital geometry and mission ∆v results.

The study extends this validated model to the upcoming 2026–2027 launch opportunity, generating
∆v and propellant “porkchop” plots to quantify performance across the launch window. Results show
that aerocapture can reduce total mission ∆v from approximately 8.4 km/s to 4.0 km/s, saving over
5 tonnes of propellant for a 20 tonne spacecraft and enabling delivery of nearly twice the payload mass
compared to a fully propulsive mission. Additionally, the optimal aerocapture transfer departs one week
later than the equivalent propulsive case for the same arrival date, offering improved schedule flexibility
and operational robustness.

While the aerocapture model assumes an idealised exponential atmosphere and neglects aerodynamic
lift, thermal, and guidance constraints, it captures the dominant energy-exchange mechanisms driving
entry dynamics. The results clearly demonstrate the strategic value of aerocapture for high-mass or
crewed Mars missions—reducing fuel requirements, expanding payload capacity, and improving mission
resilience within a given launch window. Overall, the investigation highlights aerocapture as a practical
and efficient solution for next-generation Mars transfer architectures.
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1 Interplanetary Travel to Mars Including Aerocapture

1.1 Introduction

This section presents a complete end-to-end model of an Earth–to–Mars transfer from a circular Earth
parking orbit to a captured Mars orbit, evaluated for both purely propulsive and aerocapture-assisted
cases. The methodology was developed in Python using the hapsira astrodynamics package and follows
the framework outlined in the AERO4800 assignment task sheet by James [1]. Model validation was
performed against the benchmark case from Curtis [2] (Example 8.8 ), which considers an Earth–Mars
Hohmann-type transfer between 7 Nov 1996 and 12 Sep 1997 (time of flight = 309 days).

The model simulates Lambert transfers between heliocentric positions of Earth and Mars, computes
departure and arrival hyperbolic excess velocities, and evaluates the corresponding insertion ∆v with and
without atmospheric braking. For aerocapture, a simplified energy–balance approach is used to represent
drag-induced deceleration and post-entry trimming into a 300 km circular parking orbit.

Key input parameters:

m0 = 2000 kg, Isp = 450 s, hparking = 300 km. (1)

Modelling assumptions (applied throughout the assignment):

� Two-body dynamics: All interplanetary and planetocentric motions are modelled as two-body
problems, neglecting third-body perturbations, solar radiation pressure, and non-spherical gravity.

� Coplanar Lambert solutions: Transfers are computed between heliocentric positions of Earth
and Mars at specified epochs using Lambert’s problem, assuming impulsive burns at departure and
arrival.

� Aerocapture modelling: Aerocapture is represented as an instantaneous energy loss sufficient
to produce a bound elliptical orbit with periapsis at the entry altitude rp,entry and apoapsis near
the desired final orbit. The subsequent circularisation ∆v is applied impulsively at apoapsis as the
difference between the elliptical and circular orbital velocities.

� Spacecraft and propulsion: Constant specific impulse Isp = 450 s and initial mass m0 = 2000 kg
are assumed for all cases; no staging or thrust–gravity losses are modelled.

Model limitations:

� Atmospheric effects: Variations in density, winds, and dust storms at Mars are neglected. The
model assumes a uniform atmosphere capable of providing the required deceleration.

� Thermal protection and GNC: Aerothermal heating, TPS mass, and entry–guidance require-
ments are not modelled. Real vehicles must satisfy thermal and deceleration constraints and main-
tain entry–corridor accuracy.

� Energy dissipation idealisation: Perfectly efficient and stable aerocapture is assumed; no dis-
persions or over/under-shoot errors are modelled. In reality, residual propulsive ∆v is required for
trimming and correction.

� No environmental perturbations: Effects from solar radiation pressure, planetary oblateness
(J2), and out-of-plane dynamics are neglected.

� Performance margins: Results represent idealised minimum ∆v and propellant requirements;
practical missions require additional margin for contingencies, attitude control, and trajectory cor-
rection manoeuvres.

Overall, this modelling framework provides a physically consistent but computationally efficient tool for
comparing the relative performance of propulsive versus aerocapture-assisted Mars transfers and assessing
their influence on mission ∆v, propellant mass, and schedule flexibility.
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1.2 Planetary States (Ephemerides)

To begin the transfer analysis, the heliocentric positions and velocities of Earth and Mars must be
determined at the selected departure and arrival dates. These state vectors are obtained from high-
accuracy planetary ephemerides, which provide tabulated or interpolated data of celestial bodies over
time. In astrodynamics problems, these serve as the initial boundary conditions for trajectory design:
they specify where the planets are and how they are moving at the start and end of the transfer window.

Mathematically, the states are expressed as:(
R⊕(t),V⊕(t)

)
,
(
RMars(t),VMars(t)

)
, (2)

where R denotes the heliocentric position vector and V the heliocentric velocity vector of the respective
planet.

In the Python implementation, the hapsira library interfaces with astropy to generate these state
vectors from built-in ephemerides:

earth_ephem = Ephem.from_body(Earth, ts)

mars_ephem = Ephem.from_body(Mars, ts)

earth_orbit = Orbit.from_ephem(Sun, earth_ephem, date_launch)

mars_orbit = Orbit.from_ephem(Sun, mars_ephem, date_arrival)

These states provide the necessary inputs to Lambert’s problem, ensuring that the transfer orbit
computed later is dynamically compatible with the true planetary motions.

1.3 Lambert Solution for the Heliocentric Transfer

Once the planetary states at departure and arrival are known, the next step is to determine the trajectory
that links them. This is formulated as Lambert’s problem: given two position vectors R1 and R2 at two
specified times, and the elapsed time t12 between them, find the unique conic orbit that connects the
points under a central gravitational field. The solution provides the required heliocentric velocities at
departure and arrival:

(V
(h)
1 , V

(h)
2 ) = Lambert

(
R1,R2, t12

)
. (3)

In the Python code, the Maneuver.lambert function is used to construct the transfer orbit. This
method applies a numerical solver to the Lambert boundary-value problem and produces both the ma-
neuver and the resulting conic orbit:

man_to_mars = Maneuver.lambert(earth_orbit, mars_orbit)

transfer_orbit, _ = earth_orbit.apply_maneuver(man_to_mars, intermediate=True)

The output of this calculation is the heliocentric velocity vector immediately after Earth departure,

V
(h)
1 , and the heliocentric velocity vector upon Mars arrival, V

(h)
2 . These vectors fully describe the trans-

fer trajectory in the Sun-centered frame and will be validated if the correct hyperbolic excess velocities
are calculated.

1.4 Earth Departure: Hyperbolic Excess and ∆v

Once the heliocentric transfer orbit has been established, the next task is to determine the velocity the
spacecraft must achieve relative to Earth in order to inject into this orbit. This is quantified by the
hyperbolic excess velocity, v∞, which represents the residual velocity a spacecraft would have at infinite
distance from Earth after escaping its gravitational well.

The hyperbolic excess vector at Earth departure is found by subtracting the heliocentric velocity of
Earth from the required transfer velocity at departure:

vdep
∞ = V

(h)
1 −V⊕, vdep∞ =

∥∥vdep
∞

∥∥ . (4)

This ensures that the spacecraft leaves Earth’s sphere of influence with exactly the additional velocity
needed to match the transfer orbit computed in Section 3.

In the implementation, the departure velocity from the transfer orbit is compared directly with Earth’s
heliocentric velocity at the same epoch:
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r_dep, v_dep = transfer_orbit.rv()

_, v_earth = earth_orbit.rv()

v_inf_dep = np.linalg.norm((v_dep - v_earth).to(u.km/u.s))

The next step is to relate this excess velocity to a practical ∆v requirement from a circular low Earth
orbit (LEO). At a given parking orbit radius r0, the circular speed and the local escape speed are:

vcirc =

√
µ⊕

r0
, (5)

vesc =

√
2µ⊕

r0
. (6)

The spacecraft must depart on a hyperbolic trajectory such that its velocity at perigee is large enough
to both escape Earth’s gravity and supply the additional v∞ required for the interplanetary transfer.
This is expressed by the Earth departure burn:

∆vEarth =

√
(vdep∞ )2 + v2esc − vcirc. (7)

Physically, this formula accounts for the fact that the hyperbolic perigee velocity combines the local
escape speed with the hyperbolic excess, and the difference relative to the circular velocity in LEO is
the actual impulse required from the launch vehicle or upper stage. This is implemented in the code as
shown below:

mu_earth = Earth.k.to(u.km**3/u.s**2)

r_leo = (Earth.R + h_parking).to(u.km)

v_circ = np.sqrt(mu_earth / r_leo)

v_esc = np.sqrt(2 * mu_earth / r_leo)

dv_earth = np.sqrt(v_inf_dep**2 + v_esc**2) - v_circ

1.5 Mars Arrival: Hyperbolic Excess

After the interplanetary cruise, the spacecraft reaches the vicinity of Mars on the trajectory defined by the
Lambert solution. Just as at Earth departure, the key parameter that governs the capture requirements
is the hyperbolic excess velocity at arrival. This quantity represents the residual velocity the spacecraft
has relative to Mars after accounting for the planet’s heliocentric motion.

The arrival hyperbolic excess vector is obtained by subtracting Mars’s heliocentric velocity from the
transfer orbit velocity at the time of encounter:

varr
∞ = V

(h)
2 −VMars, varr∞ = ∥varr

∞ ∥. (8)

This expresses the relative velocity between the spacecraft and Mars as the spacecraft crosses into
Mars’s sphere of influence. Its magnitude is the key input for determining whether the spacecraft can be
captured into orbit by Mars, and if so, how much energy must be dissipated either by propulsive braking
or by atmospheric drag in the case of aerocapture.

In the code implementation, this calculation is carried out by propagating the transfer orbit forward
to the arrival epoch, then subtracting Mars’s velocity:

r_arr, v_arr = transfer_orbit.propagate(date_arrival).rv()

_, v_mars = mars_orbit.rv()

v_inf_arr = np.linalg.norm((v_arr - v_mars).to(u.km/u.s))

1.6 Mars Capture: No Aerocapture

When the spacecraft approaches Mars with a hyperbolic excess velocity, its trajectory relative to the
planet is a hyperbola. The speed at periapsis of this hyperbolic trajectory can be derived from the
vis-viva equation applied to the two-body Mars–spacecraft system:

vperi,hyperbola =

√
(varr∞ )2 +

2µMars

rp
, vcirc(rp) =

√
µMars

rp
. (9)
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Here, rp is the chosen periapsis radius, µMars is the standard gravitational parameter of Mars,
vperi,hyperbola is the spacecraft’s velocity at periapsis on the hyperbolic approach, and vcirc is the ve-
locity required for a circular orbit at the same radius.

The capture ∆v is then the difference between these two velocities. This represents the propulsive
braking required to transition from the hyperbolic flyby trajectory into a circular bound orbit:

∆vMars,no aero = vperi,hyperbola − vcirc(rp). (10)

These formulas were implemented in the python code as below:

r_mars = (Mars.R + 300 * u.km).to(u.km)

mu_mars = Mars.k.to(u.km**3/u.s**2)

v_circ_mars = np.sqrt(mu_mars / r_mars)

v_hyp_peri = np.sqrt(v_inf_arr**2 + 2 * mu_mars / r_mars)

dv_mars_no_aero = v_hyp_peri - v_circ_mars

dv_mars_aero = 0.0 * u.km/u.s

With rp = RMars + 300 km, this gives:

∆vMars,no aero = 2.171 km/s.

This means that without atmospheric interaction, the spacecraft must perform a retrograde burn of
roughly 2.2 km/s at periapsis to slow down enough to be captured by Mars’s gravity.

1.7 Mars Capture: Aerocapture

In the aerocapture strategy, the spacecraft uses atmospheric drag during a carefully targeted pass through
the upper Martian atmosphere to dissipate hyperbolic excess energy and convert the incoming hyperbolic
trajectory into a bound elliptical orbit. The subsequent manoeuvre is a small trim burn to circularise
the orbit at the desired parking altitude. This section outlines the simplified methodology used in the
present model, which is implemented in the function aerocapture trim dv.

Step 1: Hyperbolic periapsis velocity

The periapsis speed of the incoming hyperbolic approach, already defined in Eq. 9, is reused here as the
initial condition for the aerocapture analysis.

v_peri_hyp = np.sqrt(v_inf.to(u.km/u.s).value**2 +

2*mu.value/rp_entry.to(u.km).value)

Step 2: Post-aerocapture elliptical orbit

It is assumed that aerocapture yields a bound ellipse with periapsis at rp,entry and apoapsis approximately
at the target parking orbit radius rp,final. The semi-major axis is

a =
rp,entry + rp,final

2
. (11)

rp = rp_entry.to(u.km).value

ra = rp_final.to(u.km).value

a = (rp + ra) / 2.0

Step 3: Velocity at apoapsis

The spacecraft velocity at apoapsis is

vapo =

√
µ

(
2

rp,final
− 1

a

)
. (12)

v_apo = np.sqrt(mu.value * (2/ra - 1/a))

6



Step 4: Circular orbit velocity

The circular velocity at the target radius is the same expression already used for Mars capture.

v_apo_new = np.sqrt(mu.value / ra)

Step 5: Residual trim ∆v

Finally, the required impulsive correction at apoapsis is

∆vtrim = |vcirc − vapo| . (13)

dv_trim = abs(v_apo_new - v_apo) * u.km/u.s

This ∆vtrim represents the effective propulsive cost of aerocapture. While in the idealised case
∆vtrim → 0, in practice tens to hundreds of m/s are often required due to dispersions, imperfect guidance,
and energy dissipation errors.

Numerical Drag Integration Model

Atmospheric deceleration during aerocapture was simulated using a numerical integration of the planar
equations of motion under Mars gravity and drag forces:

¨⃗r = − µ

r3
r⃗ − 1

2

ρ(v)CDA

m
vv⃗, ρ(h) = ρ0e

−h/H ,

where ρ0 = 0.020 kg/m3 and H = 11.1 km. For a nominal spacecraft of m = 2000 kg, CD = 0.7, and
A = 15m2, the ballistic coefficient is β = m/(CDA) ≈ 1.9× 105 kg/m2.

rho0, H = 0.020, 11100.0 # kg/m^3, m

beta = m.to(u.kg).value / (Cd * A.to(u.m**2).value)

At each timestep, gravitational and drag accelerations are computed as follows:

def deriv(t, y):

x, y_pos, vx, vy = y

r = np.hypot(x, y_pos); v = np.hypot(vx, vy)

h = r - Rm

ax_g = -mu * x / r**3

ay_g = -mu * y_pos / r**3

if 0 < h < 120e3:

rho = rho0 * np.exp(-h/H)

a_drag = 0.5 * rho * v**2 / beta

ax_d, ay_d = -a_drag * vx / v, -a_drag * vy / v

else:

ax_d = ay_d = 0.0

return [vx, vy, ax_g + ax_d, ay_g + ay_d]

The integration terminates when the spacecraft exits the upper atmosphere at h = 120 km:

def exit_event(t, y):

return np.hypot(y[0], y[1]) - Rm - 120e3

exit_event.terminal, exit_event.direction = True, 1

sol = solve_ivp(deriv, [0, 5000], y0, max_step=1.0, events=exit_event)

The solution provides the complete trajectory and deceleration history from atmospheric entry (80 km)
to exit (120 km), typically showing a gradual velocity loss of several hundred m/s. Although the model
assumes constant CD, no lift, and an exponential static atmosphere, it effectively captures the key physics
of drag-induced energy dissipation during aerocapture.

7



1.8 Totals and Propellant Mass

With the Earth departure and Mars arrival requirements quantified, the overall mission ∆v budget can
be assembled.

For a fully propulsive capture scenario, the total mission cost is the sum of the Earth departure burn
and the Mars capture burn. By contrast, with aerocapture the cost reduces to the Earth departure burn
plus only a small trim ∆v to circularise at the final parking orbit.

These totals represent the cumulative velocity change that must be supplied by the spacecraft’s
propulsion system over the course of the interplanetary transfer. The large reduction in required ∆v
highlights the potential benefit of aerocapture: by using the Martian atmosphere to dissipate most of the
arrival energy, the mission avoids a major propulsive maneuver at Mars.

To connect these ∆v budgets to practical design, the Tsiolkovsky rocket equation is used:

∆v = Ispg0 ln
m0

mf
, (14)

where m0 is the initial mass, mf the final mass after the burn, Isp the specific impulse, and g0 standard
gravity. This allows direct estimation of propellant mass consumption for each mission strategy, illus-
trating how even modest changes in ∆v can translate into substantial differences in propellant fraction.

∆v = Ispg0 ln
m0

mf
⇒ mp = m0 −mf = m0

(
1− e−∆v/(Ispg0)

)
. (15)

This is used in the code as shown below:

g0 = 9.81 * u.m / u.s**2

def mass_after_burn(m0, dv, Isp):

return m0 * np.exp(-dv.to(u.km/u.s).value / (Isp * g0).to(u.km/u.s).value)

dv_total_no_aero = dv_earth + dv_mars_no_aero

mf_no_aero = mass_after_burn(m0, dv_total_no_aero, Isp)

prop_no_aero = m0 - mf_no_aero

dv_total_aero = dv_earth + dv_mars_aero

mf_aero = mass_after_burn(m0, dv_total_aero, Isp)

prop_aero = m0 - mf_aero

Here m0 is the initial mass of the spacecraft (including propellant), mf the final mass after the burn,
Isp the specific impulse of the propulsion system, g0 the standard gravitational acceleration, and mp the
propellant mass consumed. This equation captures the exponential penalty associated with increasing ∆v:
even modest increases in velocity demand translate to disproportionately higher propellant requirements.
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1.9 Results and Validation against Curtis Example 8.8

The developed model was validated against the analytical case in Curtis, Orbital Mechanics (Exam-
ple 8.8), which considers an Earth–Mars transfer from November 7, 1996 to September 12, 1997 (time of
flight 309 days). Validation proceeds in two steps: first, the transfer orbit elements are compared, and
second, the mission ∆v and propellant requirements are assessed.

Transfer Orbit Elements

Representative orbital elements of the heliocentric transfer are shown in Table 1 for both the Curtis
example and the Python hapsira implementation.

Table 1: Comparison of transfer orbit elements: Curtis Example 8.8 vs hapsira output

Element Curtis (Ecliptic frame) Code Output (J2000 Equatorial)
Semi-major axis, a [km] 1.8475× 108 1.8473× 108

Eccentricity, e 0.20581 0.20413
Inclination, i [◦] 1.662 24.65
RAAN, Ω [◦] 44.90 2.85
Argument of periapsis, ω [◦] 19.97 61.19
True anomaly, ν [◦] 340.04 −18.39

The semi-major axis and eccentricity match closely, confirming that the transfer orbit shape is con-
sistent with the analytical solution. The angular elements (inclination, RAAN, argument of periap-
sis, true anomaly) differ significantly. This discrepancy arises because Curtis presents the orbit in a
two-dimensional ecliptic frame, while the hapsira implementation calculates elements in the full J2000
equatorial frame using planetary ephemerides. As a result, the orientation parameters differ, but the
underlying transfer geometry remains consistent.

Mission ∆v and Propellant Validation

The model computes the hyperbolic excess velocities, departure and capture ∆v, and propellant require-
ments. A direct comparison with Curtis’s analytical results is shown in Table 2. Agreement in v∞ at
Earth and Mars (errors of 1–3%) validates the transfer solution, while the additional quantities follow
consistently from these values.

Table 2: Comparison of Analytical Example and Code Outputs (with percentage error)

Parameter Analytical (Curtis Ex. 8.8) Code Output Error
|vdep

∞ | 3.166 km/s 3.200 km/s 1.1%
|varr

∞ | 2.885 km/s 2.812 km/s 2.5%
∆vEarth 3.674 km/s 3.659 km/s 0.41%
∆vMars,no aero – 2.171 km/s –
∆vMars,aero – 0.043 km/s –
∆vtotal,no aero – 5.830 km/s –
∆vtotal,aero – 3.702 km/s –
Propellant (no aero) – 1466.1 kg –
Propellant (aero) – 1135.3 kg –
Time of Flight 309 days 309.0 days 0.0%

The comparison confirms that the model reproduces Curtis’s transfer geometry with small error.
Furthermore, the results quantify the large propellant savings possible with aerocapture, which removes
the ∼2.2 km/s Mars capture burn and reduces propellant mass consumption by over 300 kg for the chosen
spacecraft parameters.
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1.10 Flow Chart of Task 1 Code

To illustrate the logic of the implemented Python model, a flow chart is presented in Figure 1. The chart
shows the sequential steps from inputs, through ephemerides and Lambert’s problem, to the calculation of
Earth departure and Mars arrival ∆v values, with separate branches for aerocapture and no-aerocapture
cases. Finally, the total ∆v, propellant mass, and validation against Curtis Example 8.8 are obtained.

Figure 1: Flowchart outlining the structure of the mars transfer() simulation code. The program
sets up planetary ephemerides, solves Lambert’s problem to obtain the transfer orbit, computes ∆v at
Earth and Mars for both propulsive and aerocapture cases, and plots the resulting heliocentric and Mars-
centered trajectories.
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1.11 Task 1 Plots

The following figures present the outputs of the code developed for Task 1 of Checkpoint 2.

(a) Heliocentric Earth–Mars transfer orbit from the
Python implementation.

(b) Analytical Earth–Mars transfer from Curtis Exam-
ple 8.8.

Figure 2: Comparison of heliocentric Earth–Mars transfer trajectories from the Python implementation
(left) and the analytical solution in Curtis Example 8.8 (right). The strong geometric similarity confirms
the model’s validity.

Figure 2 shows the side-by-side comparison of the heliocentric transfer orbits generated numerically
and analytically. The local arrival conditions are further examined in Figure 3.

(a) Propulsive capture: a retrograde burn at periapsis
circularises the orbit.

(b) Aerocapture: atmospheric drag removes excess en-
ergy before a trim ∆v.

Figure 3: Local planetocentric arrival trajectories at Mars. Comparison between (a) propulsive braking
and (b) aerocapture with a small trim burn to achieve a 300 km parking orbit.

Figure 3 compares the two capture strategies at Mars: a purely propulsive burn versus aerocapture
followed by a small circularisation manoeuvre.
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2 How Aerocapture Will Allow Us to Get More Mass to Mars

2.1 Introduction

In this section, we investigate how aerocapture can be used to increase the mass which may be delivered
into orbit around Mars. Starting from a 20 tonne spacecraft in a 400 km circular parking orbit at Earth,
we compare two mission architectures: one that relies on a fully propulsive capture at Mars, and one
that employs aerocapture to eliminate the Mars orbit insertion burn. By avoiding the large ∆v penalty
typically associated with Mars capture, aerocapture has the potential to significantly reduce propellant
consumption and therefore allow more of the spacecraft mass to be delivered as payload.

The aim of this analysis is to determine how much additional payload mass can be transported to
Mars in the upcoming 2026–2027 launch window when aerocapture is used, relative to the conventional
propulsive approach. Porkchop plots are generated to visualise the total ∆v requirements across the
launch and arrival date space, and corresponding fuel requirement plots are used to evaluate the mass
delivered in both scenarios. The optimal launch and arrival dates are then selected to maximise payload
delivery, and the results are supported with heliocentric transfer orbits and Mars-centred arrival plots to
illustrate the trajectory geometry.

This section therefore provides both a quantitative and qualitative assessment of the benefits of
aerocapture for interplanetary transfers, linking trajectory design, mass fraction analysis, and mission
feasibility.

2.2 Methodology

2.2.1 Spacecraft Assumptions

The baseline vehicle is a 20 tonne spacecraft initially inserted into a 400 km circular parking orbit about
Earth, as obtained from the results of Checkpoint 1. The propulsion system is modelled with a realistic
high-efficiency cryogenic engine, with a specific impulse of Isp = 450 s (representative of the RL10 engine
family). Gravitational acceleration is taken as g0 = 9.81 m/s2, and the Tsiolkovsky rocket equation is
used to calculate the required propellant mass for each manoeuvre.

2.2.2 Launch Window Selection and Optimisation Process

To identify the most effective transfer opportunities, a sweep was performed across the 2026–2027 Earth–
Mars launch window. The departure epoch was varied between August and December 2026 in 7-day
increments, while the corresponding arrival epoch was varied between June and November 2027. This
span was chosen to encompass the October 2026 launch opportunity highlighted in recent literature as a
promising minimum-energy transfer [3]. A minimum time-of-flight constraint of 50 days was imposed to
exclude unrealistically short trajectories.

For each departure–arrival pair, the transfer problem was solved using Lambert’s method to obtain
the required ∆v at both Earth departure and Mars arrival. Two cases were considered: a fully propulsive
capture manoeuvre at Mars and an aerocapture case where the orbit insertion burn is replaced with
atmospheric braking. The results of each case were stored in four arrays: total ∆v with and with-
out aerocapture, and the associated propellant mass required, computed using the Tsiolkovsky rocket
equation.

Listing 1: Initialisation of launch/arrival date arrays and storage matrices.

dep_dates = Time(np.arange("2026-08-01", "2026-12-01", dtype="datetime64[7D]"))

arr_dates = Time(np.arange("2027-06-01", "2027-11-01", dtype="datetime64[7D]"))

DV_no_aero = np.zeros((len(dep_dates), len(arr_dates)))

DV_aero = np.zeros((len(dep_dates), len(arr_dates)))

FUEL_no_aero = np.zeros((len(dep_dates), len(arr_dates)))

FUEL_aero = np.zeros((len(dep_dates), len(arr_dates)))

The sweep procedure was automated using a Python routine. Each iteration called the mars transfer()

function, which returned the ∆v components and propellant consumption for a given date pair:
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Listing 2: Looping through departure and arrival dates to evaluate ∆v and fuel mass.

for i, d_dep in enumerate(dep_dates):

for j, d_arr in enumerate(arr_dates):

if d_arr > d_dep + 50*u.day: # enforce minimum flight time

res = mars_transfer(d_dep.iso, d_arr.iso,

m0=m0, Isp=Isp, h_parking=h_parking,

plot=False, mars_plot=False, porkchop=False)

DV_no_aero[i,j] = res["dv_total_no_aero"].to(u.km/u.s).value

DV_aero[i,j] = res["dv_total_aero"].to(u.km/u.s).value

FUEL_no_aero[i,j] = res["propellant_no_aero"].to(u.kg).value

FUEL_aero[i,j] = res["propellant_aero"].to(u.kg).value

Finally, the results were assembled into contour plots, commonly referred to as porkchop plots. Two
sets of porkchop plots were generated:

1. ∆v porkchops: Contours of total mission ∆v as a function of departure and arrival date.

2. Fuel porkchops: Contours of required propellant mass (in tonnes).

Listing 3: Example of porkchop plotting with calendar date axes.

cs1 = ax1.contourf(dep_dates.plot_date, arr_dates.plot_date, DV_no_aero.T,

levels=np.arange(3,9,0.5), cmap="viridis")

plt.colorbar(cs1, ax=ax1, label="Total␣$\Delta$v␣[km/s]")

ax1.xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m-%d"))

ax1.yaxis.set_major_formatter(mdates.DateFormatter("%Y-%m-%d"))

The plots were formatted with calendar dates on both axes for clarity, using the matplotlib.dates

library. This enabled visual identification of the optimal launch period and provided a direct comparison
of how aerocapture improves payload delivery by eliminating the Mars capture ∆v.

2.3 ∆v and Fuel Porkchop Analysis

To visualise the variation in mission performance across the 2026–2027 Earth–Mars launch window,
porkchop plots were generated for both ∆v requirements and corresponding fuel consumption. Figures 4
and 5 show the results for the propulsive capture and aerocapture cases.

Figure 4: Total mission ∆v porkchop plots for the August–December 2026 departure window and June–
November 2027 arrival window. Left: propulsive capture at Mars. Right: aerocapture at Mars.

13



Figure 5: Fuel requirement porkchop plots, showing propellant consumption in tonnes for the same
departure/arrival windows. Left: propulsive capture at Mars. Right: aerocapture at Mars.

2.3.1 Identification of Optimal Trajectory Regions

The ∆v plots clearly highlight regions of minimum cost transfer. For the purely propulsive scenario, the
minimum ∆v is approximately 5.75 km/s, corresponding to a departure in the end of October 2026 and
arrival in early September 2027. In the aerocapture case, the Mars orbit insertion burn is eliminated,
reducing the total mission ∆v to approximately 3.70 km/s for the same window.

The corresponding fuel porkchops confirm this trend. Without aerocapture, the optimal trajectory
consumes around 15 tonnes of propellant, leaving only ∼5 tonnes of dry mass available from the original
20 tonne spacecraft. With aerocapture, the propellant required drops to only ∼11 tonnes, meaning
∼9 tonnes remain for payload and structure.

2.3.2 Comparison and Sensitivity

The comparison between cases demonstrates that aerocapture provides a reduction of ∼2.05 km/s in ∆v
and a corresponding saving of 5 tonnes of propellant. This represents a payload delivery improvement of
more than 50% for the same launch mass.

The plots also highlight the sensitivity of trajectory design to departure epoch. Departures outside
the October 2026 minimum-energy window rapidly increase both ∆v and fuel consumption; for example,
shifting the departure to late November can increase propellant demand by 3–4 tonnes.

2.4 Trajectory Visuals

To provide geometric context to the porkchop analysis, trajectory visualisations were generated for the
selected Earth–Mars transfer, departing on 27 October 2026 and arriving on 21 September 2027 (time of
flight ∼329 days).

Figure 6 illustrates the heliocentric geometry of the transfer, showing the orbits of Earth and Mars
and the Lambert arc connecting the departure and arrival positions. The corresponding Mars-centred
arrival views are given in Figure 7, which compare the hyperbolic approach under a purely propulsive
capture scenario against the aerocapture case. These plots highlight the fundamental difference in arrival
conditions: a large retrograde burn at periapsis versus atmospheric drag with only a small trim manoeu-
vre. Together, these visualisations link the interplanetary phasing seen in the porkchop plots to the local
capture dynamics at Mars.
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Figure 6: Heliocentric transfer orbit for departure on 27 October 2026 and arrival at Mars on 21 Septem-
ber 2027. Earth and Mars orbits are shown as dashed lines, with the transfer trajectory in green.

Figure 7: Mars-centred arrival geometry for 21 September 2027. Top: propulsive capture, requiring a
large retrograde insertion ∆v. Bottom: aerocapture case, where atmospheric drag removes most of the
hyperbolic excess velocity and only a small trim burn is needed.
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3 Determining the Fastest Feasible Transfers for a Fixed Space-
craft Mass

3.1 Introduction

While the previous section compared total ∆v and propellant requirements across the entire 2026–2027
launch window, it did not explicitly determine which of these transfer opportunities could be flown by
a spacecraft with a fixed propellant budget. In practice, mission design is constrained by the total wet
mass that can be launched and the proportion of that mass allocated to propellant. To account for these
limitations, a post-processing routine was developed to identify the fastest viable Earth–Mars transfer
that a 20 tonne spacecraft can perform, given realistic payload and structural mass fractions.

The purpose of this analysis is to quantify how the use of aerocapture affects both the achievable
time of flight and the detailed ∆v distribution for a spacecraft with limited fuel reserves. In particular,
by eliminating the 2 km/s Mars orbit insertion burn, aerocapture should permit higher-energy depar-
tures from Earth, enabling a shorter cruise duration within the same propellant budget. The results
therefore demonstrate the trade-off between fuel, travel time, and trajectory energy for the two mission
architectures.

3.2 Methodology

3.2.1 Spacecraft Mass Model

The spacecraft is assumed to have a total mass of m0 = 20 000 kg, consisting of a 1 tonne payload and a
2 tonne structural dry mass. This leaves a maximum available propellant mass of mfuel,avail = 17 000 kg.
The propulsion system has a specific impulse of Isp = 450 s, consistent with the previous analysis. Any
trajectory that requires more than 17 tonnes of propellant is deemed infeasible. This constraint ensures
that only missions physically achievable by the baseline vehicle are considered.

3.2.2 Filtering Feasible Transfers

The routine imports the data arrays generated by the porkchop sweep 2026() function, which contain
the total ∆v, propellant mass, and time-of-flight (TOF) values for every departure–arrival combination.
These arrays are then filtered to exclude trajectories that exceed the available propellant:

Listing 4: Masking infeasible trajectories based on fuel mass constraint.

mask_no_aero = np.ma.masked_where(FUEL_no_aero > m_fuel_available.value, TOF_days)

mask_aero = np.ma.masked_where(FUEL_aero > m_fuel_available.value, TOF_days)

The numpy.ma.masked where() function applies a logical mask, leaving only the transfer opportunities
that satisfy the spacecraft’s fuel limit. This filtering is performed separately for the propulsive and
aerocapture cases.

3.2.3 Fastest Valid Transfer Search

Within the set of feasible transfers, the algorithm searches for the shortest time-of-flight by identifying
the minimum unmasked TOF value:

Listing 5: Locating the minimum time-of-flight among feasible transfers.

i_no, j_no = np.unravel_index(np.nanargmin(mask_no_aero), mask_no_aero.shape)

i_a, j_a = np.unravel_index(np.nanargmin(mask_aero), mask_aero.shape)

The corresponding indices are used to retrieve the launch and arrival dates of each optimal trajectory.
These dates are then passed back into the mars transfer() function to recompute the detailed ∆v
components (Earth departure and Mars arrival) for both cases. This ensures that the output includes
not only total ∆v, but also the contribution of each manoeuvre:
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Listing 6: Re-evaluating detailed ∆v components for fastest transfers.

res_no_aero = mars_transfer(dep_dates[i_no].iso, arr_dates[j_no].iso,

m0=m0, Isp=Isp, h_parking=400*u.km,

plot=False, mars_plot=False, porkchop=False)

res_aero = mars_transfer(dep_dates[i_a].iso, arr_dates[j_a].iso,

m0=m0, Isp=Isp, h_parking=400*u.km,

plot=False, mars_plot=False, porkchop=False)

3.2.4 Output and Comparison

The function then prints a detailed summary of both optimal transfers, including the time of flight, total
propellant consumed, and the individual ∆v requirements at Earth departure and Mars arrival:

Table 3: Comparison of optimal Earth–Mars transfers for a 20 tonne spacecraft with and without aero-
capture.

Parameter Propulsive Capture Aerocapture
Time of Flight [days] 196 189
Propellant Used [kg] 16 986 11 953
Departure ∆v (Earth) [km/s] 3.82 3.97
Arrival ∆v (Mars) [km/s] 2.31 0.20
Total Mission ∆v [km/s] 6.13 4.17
Launch Date 2026–11–12 2026–11–19
Arrival Date 2027–05–27 2027–05–27

Difference (Aerocapture – Propulsive)
∆tflight = −7 days,

∆vsaved = 1.96 km/s,
Propellant saving ≈ 5 tonnes

This output reveals that the aerocapture trajectory departs one week later, arrives on the same date,
and consumes approximately 5 tonnes less propellant. The 2 km/s reduction in Mars arrival ∆v directly
translates into a lighter fuel requirement and a modest 7-day reduction in flight time, demonstrating the
efficiency advantage of aerocapture within the 2026–2027 launch opportunity.
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3.3 Task 3: Trajectory Visualisation and Comparison

Figures 8–9 present the interplanetary trajectories and Mars-centred arrival geometries for both the
aerocapture and non-aerocapture mission scenarios. The solutions correspond to optimised transfers
between Earth departure in late 2026 and Mars arrival in May 2027, computed using the hapsira
astrodynamics package to solve the Lambert transfer and propagate the resulting trajectories.

(a) No-aerocapture case: Earth departure on
12 Nov 2026, v∞,dep = 4.06 km/s, Mars arrival
on 27 May 2027, v∞,arr = 6.19 km/s. Total
∆vtotal,no aero = 6.36 km/s.

(b) Aerocapture case: Earth departure on
19 Nov 2026, Mars arrival on 27 May 2027.
Atmospheric braking replaces most of the capture
burn, leaving only ∆vMars,aero = 0.065 km/s.

Figure 8: Comparison of heliocentric Earth–Mars transfer trajectories for the no-aerocapture (left) and
aerocapture (right) mission profiles.

(a) No-aerocapture: Mars arrival with v∞,arr =
6.19 km/s, requiring a ∆vMars,no aero = 4.44 km/s cap-
ture burn at periapsis to enter a 300 km circular orbit.

(b) Aerocapture: entry at rp = RM + 80 km enables
drag to remove nearly all hyperbolic excess energy.
A small ∼ 64 m/s trim burn circularises the orbit at
300 km altitude.

Figure 9: Mars-centred hyperbolic arrival trajectories for the no-aerocapture (left) and aerocapture (right)
scenarios.
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Orbital parameter and mission comparison

Table 4 summarises the transfer orbital elements and key mission results for the aerocapture and no-
aerocapture cases (values computed using hapsira).

Table 4: Comparison of transfer orbital elements and Mars transfer results

Aerocapture No Aerocapture

Orbital elements (transfer orbit)
Semi-major axis, a [km] 2.0608× 108 2.0595× 108

Eccentricity, e 0.2865 0.2842
Inclination, i [◦] 24.3746 24.7088
RAAN, Ω [◦] 3.2493 3.3917
Argument of periapsis, ω [◦] 48.0364 47.5026
True anomaly, ν [◦] 5.1670 −1.5075

Mars transfer results
Time of flight (days) 189.0000 196.0000
v∞,dep [km/s] 4.1802 4.0585
v∞,arr [km/s] 6.2726 6.1904
∆vEarth [km/s] 3.9541 3.9110
∆vMars [km/s] 0.0747 4.4440
Total ∆v [km/s] 4.0289 8.3550
Propellant mass [kg] 11 970.7910 16 986.4761

Differences / savings (aero vs no-aero)
Total ∆v reduction [km/s] 4.3261 (51.8% reduction)
Propellant mass saved [kg] 5 015.6851 (29.5% saved)
Launch date difference 2026-11-19 vs 2026-11-12 (7 days later for aero)

Interpretation. Table 4 shows that both transfers have nearly identical heliocentric geometries, with
minimal differences in semi-major axis, eccentricity, and orbital orientation. This confirms that the
interplanetary leg is largely independent of the Mars capture method. The mission-level contrast, however,
is significant: aerocapture reduces total ∆v from 8.3550 km/s to 4.0289 km/s (a 4.3261 km/s
or 51.8% reduction), and lowers propellant usage from 16,986.4761 kg to 11,970.7910 kg (29.5%
saving).

The smaller percentage change in propellant mass relative to ∆v reflects the exponential dependence
of the rocket equation and the fixed vehicle structural mass fraction. Additionally, the aerocapture
case allows a seven-day later launch window (19 Nov 2026 vs 12 Nov 2026) for the same arrival
date, improving operational flexibility and reducing schedule risk while maintaining an identical transfer
geometry.

Discussion

The results in Table 4 highlight the significant performance advantage of using atmospheric braking for
Mars capture. Although both transfers share nearly identical orbital geometries, replacing the propulsive
insertion with aerocapture more than halves the total ∆v, reducing propellant demand and launch mass
while increasing delivered payload capability.

Operationally, the aerocapture case also allows a seven-day later launch for the same arrival date
(19 Nov 2026 vs 12 Nov 2026), providing improved schedule flexibility and reduced sensitivity to phasing
constraints. Overall, the inclusion of aerocapture introduces manageable complexity in exchange for
substantial efficiency and mass savings—making it an attractive option for future high-mass or crewed
Mars missions.
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4 Conclusion

This study developed a complete numerical framework for analysing Earth–Mars transfer trajectories
and evaluating the performance benefits of atmospheric aerocapture. Using the hapsira astrodynamics
package, the model successfully reproduced analytical benchmark results from Curtis (Example 8.8) and
extended the analysis to the 2026–2027 launch opportunity.

Across all tasks, results demonstrated the substantial efficiency gains achievable through aerocapture.
By using Mars’ atmosphere to dissipate hyperbolic excess energy, the required arrival ∆v decreased by
more than 4 km/s, halving the total mission ∆v and saving approximately 5 tonnes of propellant for a 20
tonne spacecraft. These savings directly translate into increased payload capacity and launch flexibility
without altering the interplanetary transfer geometry.

The porkchop analyses and trajectory visualisations confirmed that both the propulsive and aerocap-
ture transfers share nearly identical heliocentric orbits, but differ significantly in capture energy and mass
efficiency. Aerocapture also allowed a later Earth departure for the same Mars arrival date, enhancing
operational flexibility and reducing schedule sensitivity.

While the analysis was idealised—neglecting thermal protection, aerodynamic lift, and entry guidance
effects—the findings clearly illustrate the mission-level advantages of incorporating atmospheric braking
into Mars capture design. Future extensions of this work could include detailed aerodynamic modelling,
thermal load prediction, and probabilistic guidance simulations to validate practical feasibility.

In summary, aerocapture represents a transformative technique for high-mass or crewed Mars missions,
enabling lower launch mass, higher delivered payload, and greater mission robustness within the same
transfer opportunity.
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